Polaron mobility and disordering of the Na sublattice in Na_xFePO₄

x=2/3 ordered phase

S. J Tracy, L. Mauger, H. Smith, and B. Fultz California Institute of Technology, Pasadena CA

EFree Project: Ion Transport Processes

Goal: To characterize the structural features that underlie ion transport in battery materials.

- Low cost and environmental abundance of Na
 - → Attractive alternative to Li batteries
- Na analogue to LiFePO₄: triphylite-NaFePO₄
 - → Obtained via ion exchange route
- Ordered structure: 3 distinct Fe sites with a 1/1/1 ratio
 - 1, 2 & 3 vacancies in their 6-fold Na coordination shell

Synchrotron x-ray diffraction Na_{0.73}FePO₄

- Superstructure peaks: long range order persists for x>2/3
- Superstructure peaks become increasingly weak & are completely gone by 483 K
- (020) peak has a low angle shoulder \rightarrow intensity increase with temperature
- Region above x=2/3 is biphasic at 298 K

Small polaron hopping

- Bound carrier can only move if the local distortion travels with it
- Elevated temperature \rightarrow diffusive Arrhenius-type mobility

Nuclear resonant scattering: probe for dynamical valence states

- Valence fluctuations at iron ions due to charge hopping
- Spectra are altered when dynamical changes occur on the same time scale of the ⁵⁷Fe nuclear decay

Secondary ferrous doublet in Mössbauer spectrum

- 2 distinct Fe²⁺ components (A & B)
- Abnormally low QS of the B-site
 - → local environment different from parent structure
- x=2/3: area ratio B/A ~35/65

Seems to contradict the proposed superstructure (50/50)

- B-component no longer present when cooled to 77 K
- Above 450 K, valence fluctuations \rightarrow Asymmetric line broadening

Analyzed with Blume-Tjon model determine polaron hopping frequencies, Γ (T).

Arrhenius fit $\rightarrow E_a$ ~500 meV

- Ratio of B to A-type Fe²⁺ sites varied as fit parameter
- Charge hopping was limited to the B-type Fe²⁺ sites

Temperature evolution of Fe and Na site occupancies

- Rapid conversion of A-type to B-type ferrous Fe sites above 450 K
- At low temperature (red) the Fe²⁺ absorption lines at ~0 mm/s are distinct. By 473 K, B-type environment becomes the majority divalent component
- For absorptions at ~2 mm/s, effect is obscured by the spectral collapse of the Fe²⁺ and Fe³⁺ lines from the concurrent onset of fast charge hopping

While diffraction rules out a significant rearrangement of Na ions between 77-298 K, a charge localization transition is possible

3 Fe sites with their Na coordination shell for 4 temperatures 77-500 K

Low temperature: charge order

Fe³⁺ prefer the blue sites Fe²⁺ prefer the red or green sites

Increasing temperature: electronic disorder

Partial ferrous occupancy of blue site Fe²⁺ site with unusually low QS (B-site)

298 K: total electronic disorder

Fe³⁺ evenly distributed over all 3 sites → 33/66 B/A ratio

- → 3 Fe sites start to look the same (brown)
- → overall reduction of Na coordination of the Fe sites

Relationship between the onset of fast electron dynamics & the redistribution of sodium

Clarifies details related to the Na and electronic charge ordering in the structure and suggest that electron-ion interactions may play an important role in the dynamics

Activation volume (V_{Δ}) : local distortion in activated state

Energy barrier for polaron transfer between adjacent sites

Extra energy cost due to the finite volume change in the activated state

- Due to phase transition above 500 K at 2 GPa we are only able to put a lower bound on V_{Δ}
- At 493 K at 2 GPa little indication of spectral effects from polaron hopping
- Large positive V_{α} is not typical of polaron hopping. Indicates electron ion-interactions may play a role in the dynamics

 $V_A > +3 \text{ A}^3$

Diamond Anvil cell in Vacuum Block Furnace

