# Chemical Bonding Forces and Metallization of Hydrogen

Ivan I. Naumov

Geophysical Laboratory, Carnegie Institution of Washington







Naumov & Hemley, Accts. Chem. Res., 47(12), 3551 (2014)

## Importance of Fundamental Studies of Hydrogen and Hydrogen-rich Materials

- H in a metallic state is expected to exhibit high Tc (Neil Ashcroft, 1968)
- Evidence for Tc near 200K in hydrogen-rich sulfur compound (Eremets et al.)
- " Hydrogen-dominant materials could be important for
  - (i) hydrogen storage
  - (ii) general energy storage (as high density materials)
  - (iii) for solving structural problems in nuclear industry (hydrogen embrittlement)

Understanding pure hydrogen over the broadest range of P-T is an important starting point

## Goals

- É To discuss the properties of dense hydrogen from the chemical point of view
- É To argue that they are controlled by closed shell effects over a wide range of pressures
- É To touch the question why hydrogen behaves so differently from simple alkali metals

New Hydrogen Phase Diagram



New Hydrogen Phase Diagram



## C2/c and Pbcn structures

C2/c (III)

Pbcn (IV)



C. J. Pickard and R. J. Needs, Nat. Phys., 3, 473 (2007); Phys. Rev B, 214114(2012).

## *Cmca-4*: graphite-like structure



Naumov, Cohen & Hemley, Phys. Rev. B, 88, 045125 (2013)

## **Closed Shell Effect**



# Analogy between 1*s* electrons in hydrogen and electrons in carbon



Naumov & Hemley, Accts. Chem. Res., 47(12), 3551 (2014)

H<sub>6</sub> ring vs nonplanar isomers



D. A. Dixon et al. Faraday Discuss. Chem. Soc., 62, 110 (1977).

#### Total energies per atom for $H_n$ rings (n = 3 10)



#### Hückelø rule:

Aromatic compounds must have  $4N+2 \pi$  electrons, N=0, 1, 2, 3...,to fill a  $\pi$  shell

### Total energies per atom for $H_n$ rings (n = 3 10)



Hückeløs rule:

Aromatic compounds must have  $4N+2 \pi$  electrons, N=0, 1, 2, 3..., to fill a  $\pi$  shell

*n*=6,10

Correlation corrections:

Lower the total energy but have only little effect on energy differences

Naumov & Hemley, Accts. Chem. Res., 47(12), 3551 (2014)

Total energies and interatomic distances in H<sub>n</sub> rings



Naumov & Hemley, Accts. Chem. Res., 47(12), 3551 (2014

## H<sub>6</sub> molecular energy levels and vibrational frequencies

- É Bonding  $a_{1g}$ ,  $e_{1u}$ , and  $a_{2u}$  orbitals go down in energy with pressure
- É  $a_{2u}$  stems from the  $2p_z$  atomic orbitals



### H<sub>6</sub> molecular energy levels and vibrational frequencies

- É Bonding  $a_{1g}$ ,  $e_{1u}$ , and  $a_{2u}$  orbitals go down in energy with pressure
- É  $a_{2u}$  stems from the  $2p_z$  atomic orbitals



É Kekulean  $B_{2u}$  vibrational mode becomes stable for < 0.86

0.86 ~ 500 GPa

Naumov & Hemley, Accts. Chem. Res., 47(12), 3551 (2014)

 $H_6$  ring energetics with respect to the  $B_{2u}$  mode



Naumov & Hemley, Accts. Chem. Res., 47(12), 3551 (2014)

# Correlation between the molecular orbitals for $D_{6h}$ and $D_{3h}$ structures:





The 3rd lowest unoccupied MOs  $a_{2u}$  and  $a''_2$  are bonding states stem from the atomic  $2p_z$  electrons

### From isolated rings to 2D lattices

| 0                 | ptimized<br>distance<br>↓ | Energy<br>↓ | Relative<br>to ring<br>↓ |
|-------------------|---------------------------|-------------|--------------------------|
|                   | r (Å)                     | E (Ha)      | ΔE (Ha)                  |
| triangle          | 4.23                      | -0.451      | 0.075                    |
| square            | 4.35                      | -0.451      | 0.052                    |
| graphene-<br>like | 1.18                      | -0.555      | 0.009                    |

The graphene structure is far more stable than the other two





### From H<sub>6</sub> to H-graphene







# Gap opening: Peierls distortions



K

Nestings between the valence and conduction bands:

$$\varepsilon_{i}(\mathbf{k}) = \varepsilon_{j}(\mathbf{k}),$$

$$\varepsilon_{i}(\mathbf{k}) = \varepsilon_{j}(\mathbf{k} + \mathbf{K} - \mathbf{K}')$$
Kohn anomaly:
$$\omega_{\lambda}(q) : q = \Gamma, q = \mathbf{K}$$

$$\varepsilon_{i}(\mathbf{k}) = \varepsilon_{j}(\mathbf{k} + \mathbf{K} - \mathbf{K}')$$
TO, LA

Naumov, Cohen & Hemley, Phys. Rev. B, 88, 045125 (2013)

## TO-mode



### **3D Candidate Structures**

Pbcn



## Energy Level Diagram



### **Comparison between H and Li**



Li: direct band gap and interstitial valence charge!

### Li: interstitial localization in 1D



### **Topology and interstitial localization in 1D**

 $Z_2$  = additive group of the integers mod 2 or two-valued invariant



P.Jadaun, et al. Phys. Rev. B 88, 085110 (2013)

## Summary

- É  $H_6$  rings and hydrogenic graphene-like layers are especially stable due to aromatic and closed shell effects.
- É This stability is inherited by 3D structures of dense H.
- É Metallization of compressed H should occur by destroying the closed shell electronic structure, *f.e.* by lowering the bonding states associated with 2s and 2p orbitals.