Anomalous Surface Thermodynamics of Gas Adsorption on Zeolite-Templated Carbon

Maxwell Murialdo

October 27, 2015

Goal: To obtain mesoporous and mesostructured crystalline materials through templated synthetic routes at high pressure for catalysis and related applications.

Current Research Objective:

To develop gas characterization techniques and novel insight to guide the development of energy relevant materials.

Physisorption:

$$\frac{H_g(P,T) - H_a(\theta,T)}{T} = S_g(P,T) - S_a(\theta,T)$$

www.horiba.com

A Superposition of Langmuir Isotherms gives High-Quality Fits

$$q_{st} = -\Delta H_{ads} = -T \left(\frac{\partial P}{\partial T}\right)_{n_a} \left(\Delta v_{ads}\right)$$

Net Increase: 1.1 kJ/mol

Net Increase: 1.4 kJ/mol

Unlike Activated Carbons ZTC has a Sharp Pore-Size Distribution

Zeolite NaY

NaY-PFA

ZTC

$$H_a = H_g - \Delta H_{ads}$$

Adsorbed Phase Molar Heat Capacity (Constant Pressure)

Lower than Expected Adsorbed Phase Entropy on ZTC Suggest Clusters

$$\frac{\Delta H}{T} = \Delta S$$

-Lower temperatures have more clustered α" phase and more favorable energetics

-At constant temperature the α'' phase grows linearly with Increased concentration

(Phase Transitions in Materials, Fultz, B., 2013)

EFree

Predictive Model of the Slope Of the Adsorbed Phase Enthalpy With Respect to Loading

$$\frac{\partial(\Delta H_{ads})}{\partial\theta} = \frac{z\varepsilon A}{2}$$

	Estimated Slope (kJ/mol)		Measured Slope (kJ/mol)	
Methane	2	2.4	:	2.2
Ethane	3	3.6		3.3
Krypton	2	2.6		2.7

Critical Temperature for Square-Lattice Ising Model

$$T_o = \frac{2\varepsilon}{k_B(1+\sqrt{2})}$$

An Energy Frontier

Research Center

Conclusions

-Control of pore-size distribution enables tuning of adsorption thermodynamics

-Anomalous isosteric heat results from cooperative adsorbate-adsobate interactions enabled by adsorbed-phase clustering only observed on ZTC

-ZTC allows for ~ 50% improvement in deliverable gas capacity (over no adsorbent)

Acknowledgements

Brent Fultz

Nicholas Stadie

Channing Ahn

Conclusions

-Control of pore-size distribution enables tuning of adsorption thermodynamics

-Anomalous isosteric heat results from cooperative adsorbate-adsobate interactions enabled by adsorbed-phase clustering only observed on ZTC

-ZTC allows for ~ 50% improvement in deliverable gas capacity (over no adsorbent)

