New directions in High-pressure Chemistry with Periodic Mesostructured Materials

Efree2 talk, Oct 22, 2014

Discovery of Periodic Mesoporous Silicas

Kresge, C. T., Leonowicz, M., Roth, W. J., Vartuli, J. C. & Beck, J. C. Nature 359, 710-712 (1992).

Periodic mesoporous silicas have ordered mesopores (2-50 nm) in a silica framework.

Nanocasting as templating strategy

Use of periodic mesoporous silica, e.g. SBA-15 as template.

R. Ryoo et. al. J. Phys. Chem. B 1999, 103, 7743.

- Materials like nitrides and metals which can't be synthesized in an aqueous medium may be produced by nanocasting.
- Control over the pore system i.e., hexagonal or cubic etc.

Nanocasting at high pressure

SBA16/Carbon composites at 10 GPa

Phase diagram of silica

SBA16/C composites at 10 GPa

RT 400 ° C 800 ° C

SBA16/C composites at 10 GPa

1000°C

1400 °C

1800 °C

Periodic Mesoporous Coesite

Large-pore periodic mesoporous quartz

Starting material: Large-pore FDU-12 (fcc lattice of spherical mesopores (19 nm size)) Synthesis conditions: 4 GPa, 750 °C Surface area 238 m² g⁻¹ Lattice parameter a = 39 nm

Synthesis at 1 and 2 GPa at 750 °C

Stishovite Nanocrystals from SBA-16 (12GPa, 400°C)

What happens below 400 ° C?

PXRD and Raman spectrum of SBA-16 at 12 GPa and 300 $^\circ\,$ C

Direct formation of mesoporous coesite single crystals from SBA-16

Direct formation of mesoporous coesite single crystals from SBA-16

3D-STEM analysis

Estimated Porosity: $49 \pm 9 \%$ Estimated Surface area: $54 \text{ m}^2 \text{ g}^{-1}$

Diamond from periodic mesoporous carbon CMK-8

Diamond from periodic mesoporous carbon CMK-8

HR-TEM

SEM and Z-contrast HAADF-TEM

Mesoporous diamond from hexagonal soft-self-assembled carbon

Triblockcopolyether

Diamond synthesis from soft-self-assembled SBA-15 type carbon

Synthesis conditions: 21 GPa, 1300 °C.

Diamond synthesis from soft-self-assembled SBA-15 type carbon at 14 GPa

111 (a) Intensity 220 311 10 15 20 25 30 35 40 20 / degree 1332.9 (b) Intensity 500 1000 1500 2000 Wavenumber / cm⁻¹

(a) TEM image and SAED pattern (inset of a), (b) SEM image, and (c) HR-TEM image and SAED pattern (inset of c) of diamond nanocrystals synthesized at 14 Gpa/1300 °C.

(a) XRD pattern (Mo K α) and (b) the UV-Raman (λ_{ex} = 325 nm) spectrum of synthesized diamond nanocrystals. (c) Asterisk (*) in (a) indicates amorphous carbon.

Diamond synthesis from soft-self-assembled SBA-15 type carbon at 14 GPa

CONTIN analysis of dynamic light scattering measurements at different scattering angles (45 to 100 degrees) of diamond nanocrystals dispersed in acetone (inset shows diamond solution)

Diamond synthesis from soft-self-assembled SBA-15 type carbon at 14 GPa

14 GPa, 1400 °C 30 min14 GPa, 3h, 1400 °C.50 nm crystals200 nm crystals

Lowering the pressure to 12 GPa, 1300 °C only yielded graphite.

Future directions

- At which pressure is the transition between the diamond nanocrystals and the mesoporous diamond?
- What are basic physical properties like the thermal conductivity and the hardness of mesoporous diamond compared to other porous materials?

Future directions

How can we still realize nanocasting of diamond structures?

- Extend lattice parameters (pore and pore wall diameter).
- Switch to a more inert template that does not make phase transitions.
- Choose a one-dimensional pore system to reduce dependency on periodicity.
 → Diamond nanofibers

Bulk synthesis of diamond nanofibers

Anodic aluminum oxide (AAO) as template:

- AI_2O_3 is more inert than silica.
- Al₂O₃ does not make phase transitions at high pressure.
- Pore walls and pore sizes are highly tunable (ca. 20-200 nm).
- AAO has strictly one-dimensional, non-interconnected channels.
- Template can be removed in strong base.

Bulk synthesis of diamond nanofibers

AAO

AAO/C_{graphite}

AAO/C_{diamond}

Diamond Nanofibers

Bulk synthesis of diamond nanofibers

Closed knowledge gaps: We will know how to

- nanocast diamond structures in a high-pressure synthesis.
- produce non-aggregated diamond nanofibers in bulk.
- produce processible diamond nanofibers in bulk.

Energy needs:

- Diamond nanofibers as one-dimensional thermal conductors.
- Diamond nanofibers for reinforced polymers.
 - More facile functionalization compared to carbon nanotubes.
 - More facile integration compared to carbon nanotubes.
 - Smaller loss of transparency in the polymers.

Scalable, hydrothermal growth of mesoporous quartz single crystals

How can we further decrease pressure and improve scalability?

Conditions: T_{diss} 375 ° C; T_{growth} = 350 ° C, P = 9,000 psi Overall growth time: 5 days

Quartz seed crystal plate before growth 12.8 mm (X-axis) x 8.2 mm (Y-axis) Thickness: 1.2 mm (Z-axis)

Quartz crystals after growth Thickness 7.2 mm (Z-axis)

Ruler is in inches.

Scalable growth of mesoporous quartz crystals at hydrothermal conditions

Mesoporous carbon monolith Mesoporous quartz Single crystal Scalable hydrothermal growth of mesoporous quartz crystals : An alternative scenario

Anisotropic growth rate may lead to quartz nanowires for z-cut seed crystals. Different seed crystal cut may be required.

Scalable hydrothermal growth of mesoporous quartz crystals: Possible extensions

Growth of mesoporous alumosilicates?

- Introduction of catalytically active Lewis acid and Broensted acid sites.
- High stability due to non-zeolitic channel walls.

Growth of mesoporous titano/iron silicates?

- Introduction of catalytically active Lewis acid sites.
- High stability due to non-zeolitic channel walls.

Growth of other mesoporous oxide single crystals?

• Band gap tuning of oxidic semiconductors, e.g. GeO₂, ZnO, TiO₂

Scalable growth of mesoporous quartz crystals at hydrothermal conditions

Closed knowledge gaps: We will know how to

- develop a scalable synthesis method for mesoporous silicas with crystalline walls.
- grow a large single crystals with mesopores in a controlled way.

Energy needs:

- Catalysts and catalyst supports for applications in extreme environments.
- Piezoelectric pressure sensors

C-F bond: 485 kJ/mol C-C bond: 385 kJ/mol F-F bond: 155 kJ/mol

sp² C, molecular

sp³ C, polymeric

sp³ P, polymeric

Perfluorinated diamond (nano)crystals?

Possible solution: LeChatelier's principle

4 CF
$$\stackrel{\longrightarrow}{\underset{\text{Increased pressure}}{\longrightarrow}}$$
 3 C_{diamond} + CF₄
CF $\stackrel{\longrightarrow}{\underset{\text{Increased pressure}}{\longrightarrow}}$ C_{diamond} + F₂

Closed knowledge gaps:

• We will know how to produce crystalline sp³ carbon networks that are fundamentally different from the diamond structure.

Energy need:

- Need for new ceramic materials.
- High stability due to strong C-C and C-F bonds.
- Quenchable and scalable high pressure phases.
- High hydrophobicity due to F terminated surfaces.