Transitions in Hydrogen Under Pressure

Russell J. Hemley

Geophysical Laboratory
Carnegie Institution of Washington
Washington, DC 20015

Lawrence Livermore National Laboratory
Livermore, CA 94550

Marker Lecture, Department of Physics
Pennsylvania State University, Apr. 7, 2016
Hydrogen gas in intergalactic space: 10^{-32} atm

Center of Neutron Star: 10^{28} atm

Center of Jupiter: 8×10^7 atm

Center of Earth: 3.6×10^6 atm.

10^3 atm \approx kbar

10^6 atm \approx Mbar

10 kbar = 1 GPa

1 Mbar = 100 GPa
Effects of Extreme Pressures on Molecules

\[P = -\frac{\partial E}{\partial V} \]

\[P\Delta V \sim eV \]

chemical bond strengths
High-Pressure Technology:
STATIC COMPRESSION
High-Pressure Technology: STATIC AND DYNAMIC COMPRESSION

- Static compression
 - Low temperature
 - High temperature
- Dynamic compression
 - Shock-wave
 - Isentropic
- Combined static/dynamic

National Ignition Facility
I. Introduction
II. Isolated Molecule/Zero Pressure
III. Hydrogen under Pressure
IV. New Phases
V. High Pressures and Temperatures
I. Introduction
II. Isolated Molecule/Zero Pressure
III. Hydrogen under Pressure
IV. New Phases
V. High Pressures and Temperatures
1. The aether

Adding to the four elements proposed by Empedocles: Earth, water, air, and fire

“Outside all the other spheres, the heavenly, fifth element, the aether is manifested in the stars and planets, moves in the perfection of circles.”

Aristotle (384-322 BC)
ELEMENT ONE

2. Most abundant element

3. Tests of fundamental theory

\[
\hat{H} = \sum_{i} \hat{T}^{i} + \sum_{j} \hat{T}^{j} + \sum_{k} \sum_{l} \hat{V}^{k,l} + \sum_{m} \sum_{n>m} \hat{V}^{m,n} + \sum_{o} \sum_{p>o} \hat{V}^{o,p}
\]
On the Possibility of a Metallic Modification of Hydrogen

E. Wigner and H. B. Huntington, Princeton University
(Received October 14, 1935)
4. Chemical dichotomy

“Reluctant alkali” or “tenacious halogen”
[Ashcroft, Physics World (1995)]
5. Quantum system

\[\hat{H} = \sum_i \hat{T}(i) + \sum_i \hat{T}(j) \]

Fluid ground state
[Brovman et al., JETP (1974)]

‘The Element of Uncertainty’

6. Potential energy material

- High energy density material
 (400 kJ/mole: 35 x TNT)

- High-\(T_c\) superconductor?

- Superconducting/superfluid?
ELEMENT ONE

7. Path to Inertial Confinement Fusion
8. *Driven the development of many high-pressure techniques*

- High compressibility (e.g., deformation of apparatus)
- Reactivity with metals (weaken apparatus, electrical leads)
- Weak x-ray scattering power
- Strong Raman cross-section but variable infrared absorption
- Large neutron cross-section (coherent, incoherent)

Techniques Used Over Different P-T ranges

- Optical spectroscopy
- Raman, infrared spectroscopy
- Brillouin scattering
- X-ray diffraction (single xtal, polyxtal)
- X-ray inelastic scattering
- Neutron diffraction
- Neutron inelastic scattering

- Non-linear spectroscopy (e.g., CARS)
- NMR
- Electrical transport
- Ultrasonic
- Shock compression (Hugoniot)
- Isentropic compression
I. Introduction

II. Isolated Molecule/Zero Pressure

III. Hydrogen under Pressure

IV. New Phases

V. High Pressures and Temperatures
Hydrogen in condensed phase

1898 – First liquified – 20 K
1899 – First solidified – 14 K

X-ray diffraction

$J=0$
p-H_2 (hcp)

$V_0 = 23.2 \text{ cm}^3/\text{mol}$
$R(H_2-H_2) = 3.0 \text{ Å}$
$R(H-H) = 0.74 \text{ Å}$

[Keesom et al., Comm. Kamerlingh Onnes Lab (1930)]

The rotational motion of molecules in crystals

By Linus Pauling
Gates Chemical Laboratory, California Institute of Technology
(Received May 7, 1930) [Phys. Rev. (1930)]

$J=1$ ordered state
o-H_2 (Pa3)

Molecular structure and bonding

Origin of the chemical bond
- Valence bond (Heitler-London)
- Molecular orbital (Mulliken)

- Strong covalent bond: 4.53 eV
- 14 bound vibrational states

[Silvera, Rev. Mod. Phys. (1980)]

Intramolecular and intermolecular interactions

INTRAMOLECULAR POTENTIAL
(pure; i.e., isolated molecule)

- Strong Raman cross-section
- No dipole-allowed IR absorption

INTERMOLECULAR POTENTIAL
(effective potential in condensed phase)

- Binding energy 3.0 meV (35 K)
- Interactions: *Isotopic* + *Anisotropic*
 - Leading anisotropic term is electric quadrupole-quadrupole (EQQ) interaction (odd J)

[Silvera, Rev. Mod. Phys. (1980)]
Carnegie Institution
Ortho-para distinction

BJ \((J+1)\)

Rotational levels of free Hydrogen molecule

<table>
<thead>
<tr>
<th>(J)</th>
<th>((2J+1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(11)</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(7)</td>
</tr>
<tr>
<td>2</td>
<td>509.9 K</td>
</tr>
<tr>
<td>1</td>
<td>170.5 K</td>
</tr>
</tbody>
</table>

Species

- \(H_2\): even, \(p-H_2\)
- \(D_2\): odd, \(p-D_2\)
- \(H_2\): odd, \(o-H_2\)
- \(D_2\): even, \(o-D_2\)

Coupling of nuclear spin \(I_N\) and rotational states \(J\) in total molecular spin \(I_{mol}\)

<table>
<thead>
<tr>
<th>(I_N)</th>
<th>(I_{mol})</th>
<th>(J)</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>even</td>
<td>(p-H_2)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>odd</td>
<td>(o-H_2)</td>
</tr>
<tr>
<td>1</td>
<td>0,2</td>
<td>even</td>
<td>(o-D_2)</td>
</tr>
</tbody>
</table>

[Silvera, *Rev. Mod. Phys.* (1980)]
Vibrational excitations

$O, P, Q, R, S \ldots \Delta J = -2, -1, 0, -1, 0, -2$

Rotons

$L_0(J)$

Lattice Modes

Vibrons

$Q_{\Delta v}(J); \text{ e.g., } Q_1(1)$

PRESSURE EFFECTS

- Rotational ordering
 - breakdown of J
- Molecular stability
 - lattice mode = vibron?
- Molecular interactions
 - molecular coupling?
H$_2$ excited electronic states

UV Absorption (zero pressure)

[Inoue et al. Solid State Comm. (1979)]

I.P.

Refractive Index of the Hydrogen Molecule

M. KARPLUS
Department of Chemistry and Watson Laboratory, Columbia University, New York, New York
(Received 13 March 1964)

\[
\epsilon_2(\omega) = \frac{e^2}{\pi m^2 \omega^2} \sum_{\nu, c} \int_{B_2} dk |e \cdot M_{\nu c}(k)|^2 \delta(E_c(k) - E_{\nu}(k) - \hbar \omega),
\]

\[
e \cdot M_{\nu c}(k) = \langle \psi_{\nu k} | e \cdot p | \psi_{\nu k} \rangle
\]

I. Introduction
II. Isolated Molecule/Zero Pressure
III. Hydrogen under Pressure
IV. New Phases
V. High Pressures and Temperatures
Room-Temperature Compression of Hydrogen Gas

Freezing at Room Temperature
5.4 GPa

[Mao and Bell, Science (1979)]
High-pressure measurements of the Raman vibron

Evidence for bond weakening?

Effect of compression on vibron frequencies

Compression
Frequency Increase

Orbital interactions
Frequency Decrease

Enhancement of vibrational coupling: combining Raman and IR spectroscopy

\[H_{JK} = \sum_m W'_m |m\rangle \langle m| - \frac{1}{2} \sum_{m,n \neq m} \epsilon'_{m,n} |m\rangle \langle n| \]

\[6\epsilon' = 3 \text{ cm}^{-1} \quad \text{(zero pressure)} \]

\[520 \text{ cm}^{-1} \quad \text{(180 GPa)} \]

Crystal structure by high-pressure diffraction

hexagonal close packed

Neutron diffraction (to 30 GPa)
[Glazkov et al., JETP Lett. (1986)]

X-ray diffraction (to 200 GPa)

- Monotonic decline in c/a
- No measurable isotope effect
- High compressibility shifts $P_{\text{met}} > 400$ GPa

\[
\int VdP \text{ compared to theory}
\]
Higher pressure transition: phase III

Raman Vibron

- I: solid H_2 at 75K
- II: solid H_2 in helium at 100K
- III: solid H_2 at 100K

Infrared Vibron

- *H$_2$*: Infrared Absorption
- 85 K

Wavenumbers (cm$^{-1}$):

- 4300
- 4400
- 4500
- 4600
- 4700

Absorbance:

- 0.5

Pressures (GPa):

- 0
- 50
- 100
- 150
- 200
- 250

Infrared spectroscopy of phase III: charge transfer instead of metallization

Predicted Drude models

[Hemley et al. Phys. Rev. Lett. (1996); see also, Chen et al. ibid (1996)]

Vibrational spectroscopy of phase III: low to high frequency excitations

RAMAN

![Raman spectrum of hydrogen at 140 K and 250 GPa](image)

- Librons and Phonons
- Diamond Anvils
- Vibron

INFRARED

![Infrared spectra of hydrogen at different pressures](image)

- Combination bands
- Vibron
- Absorbance

- J no longer a good quantum number
- Vibron softening/orient. ordering
- Molecules persist to >320 GPa

[Loubeyre et al., Nature (2002)]

[Souza et al., PNAS (2001)]
$P-T$ phase diagram of the solid hydrogens from vibrational spectroscopy to 200 GPa

Relationship to metallization?

THEORETICALLY PREDICTED BAND GAPS

$\rho/\rho_0 = 9$

$\rho/\rho_0 = 9$
Theory challenge for phase III: preventing band overlap with the correct crystal structure

Molecular orientation and band overlap

Dielectric Properties

Refractive Index and Oscillator Models

\[I(\nu) = A \sin\left\{ 4\pi B[1 + (\nu - \nu_0)C]\nu + D \right\} \]

\[C = (1/n_0)(dn/d\nu)_{\nu_0} \]

\[n^2 - 1 = E_d E_0 / (E_0^2 - \hbar^2 \omega^2) \]

[Hemley et al., Nature (1991)]

- Oscillator model fits to \(\varepsilon(\omega) \)
- Constrains the direct band gap not indirect gaps
- Direct measurements?
Visible absorption at ~300 GPa

- Optical absorption
- Variable sample thickness/diamond absorption
- Direct gap, not indirect gap
Early Electrical Transport Measurements

[Image of a diagram showing the setup of the experiment with labels for Alumina layer, Platinum electrodes, and Metallic gasket.]

40 µm

HYDROGEN SAMPLE

[Image of a hydrogen sample under a microscope with a scale.]

[Graph showing resistance vs. pressure with markers for S, CsI, Xe, and B.]

[H₂ (80 K)]

Early Electrical Transport Measurements [Eremets et al., Frontiers in High-Pressure Science (2002)]
X-Ray Raman of dense hydrogen: direct measurements of the band gap

0 10 20 30 40 50 60 70 80
Normalized Intensity

2 x 2.5 mm
diamonds

1.8 GPa
4.5 GPa
7 GPa
11 GPa

Energy Loss (eV)

0.0 0.5 1.0 1.5 2.0
Log(I/I₀)

2 mm Be

REE L TransE K α K α

Supporting seats

X-RAY

ELECTRONIC STATE (K-edge, Band Gap)

OPTICAL

VIBRATIONAL STATE
GROUND STATE
X-Ray Raman of dense hydrogen: direct measurements of the band gap

Direct Absorption (zero pressure)

Excitons
Band Gap

[Inoue et al. (1979)]
X-Ray Raman of dense hydrogen: direct measurements of the band gap

Estimated H_2 Band Gap

[Estimated H_2 Band Gap: Loubeyre et al. (2002)]

Normalized Intensity

Excitons, Band Gap

Density (mole/cm3)

Energy (eV)

Normalized Intensity

Energy Loss (eV)

1.8 GPa
4.5 GPa
7 GPa
11 GPa
I. Introduction
II. Isolated Molecule/Zero Pressure
III. Hydrogen under Pressure
IV. New Phases
V. High Pressures and Temperatures
Evidence for new transitions

Electrical Conductivity Onset

Raman Evidence for New Phase

H$_2$

D$_2$

[Howie et al., *Phys. Rev. Lett.* (2012)]
Synchrotron infrared spectroscopy of phase IV

(a) 268 GPa Isobaric Infrared

(b) 295 K Isothermal

(c) 280 GPa, 295 K

Absorbance

Wavenumber (cm$^{-1}$)

Pressure shifts and phase transitions

Vibron Frequencies

[Pressure (GPa)]

Wavenumber (cm⁻¹)

IV

Weakly Interacting H₂

Strongly Interacting H₂

[Wigner & Huntington (1935)]
Hydrogen Phase Diagram

[Zha et al., Phys. Rev. Lett. (2013); PNAS (2014);
see also, Howie et al., Phys. Rev. B (2013)]
Hydrogen Phase Diagram

Phase IV is a graphene-based layer structure

C-graphene

H-graphene

H_6 ‘aromatic cluster’

Hückel’s rule:

Aromatic compounds must have $4n + 2$ π electrons, $n = 0, 1, 2, 3...$ to fill a π shell

- D_{6h} to D_{3h}
- Both are aromatic

Distortions and relationship to graphene / graphite structures

PEIERLS DISTORTION -> Residual Pairing
Is hydrogen metallic at these P-T conditions?

$360 \text{ GPa, } 292 \text{ K}$
Is hydrogen metallic at these P-T conditions?

- Transparent to at least 0.1 eV
- Plasma frequency $\omega_p < 0.2$ eV
- Semiconducting or semimetallic?
- Transition to semimetal at 270 GPa (phase VI’?)

\[\epsilon_1 = n^2 - k^2 = \epsilon_{1B} - \frac{\omega_p^2 \tau^2}{1 + \omega^2 \tau^2} \]

\[\epsilon_2 = 2nk = \frac{\omega_p^2 \tau}{\omega(1 + \omega^2 \tau^2)} \]

DRUDE MODELS

[Ermerets & Troyan, Nature Materials (2011)]
A new mechanism for hydrogen metallization

- Borderline of semiconductor-semimetal at 300 GPa
- Parallels to graphite (not alkali metals)
- Higher pressures in solid?

Other structures of dense hydrogen: *Topological semimetals and surface metallization*

Cmca-4

- Band structure of a 8L slab
- Charge density of a SS at \(\Gamma \)

Predicted stable < 300 GPa

Metallic SSs also exist

- In other candidate structures including \(Pca_{2} \), \(C2/m \) and \(Cmc_{2} \).

- [Naumov et al. in preparation]
Predicted metallic superfluid

Observability of a Projected New State of Matter: A Metallic Superfluid

E. Babayev
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA
Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

A. Sudbø
Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

N. W. Ashcroft
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA
(Received 13 June 2005; published 1 September 2005)
I. Introduction
II. Isolated Molecule/Zero Pressure
III. Hydrogen under Pressure
IV. New Phases
V. High Pressures and Temperatures
Juno Mission will let Jupiter tell us

MISSION GOALS

- **Internal structure?**
- **Composition (e.g., H\textsubscript{2}O)?**
- **Gravity / magnetic fields?**
- **Origin and evolution?**
- **Size and existence of a core?**
DENSE HYDROGEN: Dynamic (Shock) Compression

ELECTRICAL CONDUCTIVITY

HUGONIOT MEASUREMENTS

High P-T Transition in Fluid Hydrogen

- Insulating to Conducting?
- Dissociation: H_2 to H?
- Pressure differences?
- Relationship to the solid transition?
High $P-T$ Transition in Fluid Hydrogen

176 beams of the NIF Laser were used, with a custom 300 kJ - 35 ns long pulse shape.

Sample Geometry

- Cu [70μm]
- D$_2$ [30μm]
- LiF [720μm]
- Al Mirror coating

Laser Pulse

![Laser pulse diagram]

Optical/Velocity (VISAR) Data

- 1st shock: D$_2$ is transparent
- 2nd shock
- 3rd shock
- 4th shock etc...
- D$_2$ becomes opaque
- D$_2$ becomes reflecting (Metallic)

Evidence for changes in the hydrogen optical properties during the reverberation compression

[Jeanloz & Hemley (PIs), *NIF Discovery Science Campaign*]
We direct experiments at the National Ignition Facility to understand the materials in ultra-extreme conditions.

- Conducting transition in fluid of hydrogen at megabar pressures?
- Depth of magnetic field generation in Jupiter?
- Melting curve of iron in exoplanets (>20 Mbar)
CONCLUSIONS AND OUTLOOK

1. Dense hydrogen is a system of unexpected complexity.

2. There is no sign of the ‘Wigner-Huntington metallization’ to 340 GPa in phases III and IV (below 300 K).

3. The structure of phase IV is broadly consistent with the structures predicted theoretically.

4. There is a remarkable parallel between dense hydrogen and graphene that reveals a new mechanism for metallization.

5. New dynamic compression results reveal a transition in fluid starting at 140 GPa.
ACKNOWLEDGEMENTS

Collaborators

CARNEGIE INSTITUTION

Chang-sheng Zha Zhenxian Liu
Ho-kwang Mao Alexander Goncharov
Reini Boehler Muhtaer Ahart
Timothy Strobel M. Somayazulu
Viktor Struzhkin R. Stewart McWilliams
Ronald E. Cohen Ivan Naumov

OTHER INSTITUTIONS

John Tse (Saskatoon)
Neil Ashcroft (Cornell)
Roald Hoffman (Cornell)
Jonathan Crowhurst (LLNL)
Michael Armstrong (LLNL)
Eugene Gregoryanz (Edinburgh)

Financial Support

DOE/NNSA, DOE/OS/BES, A. P. Sloan Foundation, NSF, Carnegie Institution
Hydrogen

[Guillot et al. (2002)]

Hydrogen