Transitions in Hydrogen Under Pressure

Russell J. Hemley

Geophysical Laboratory Carnegie Institution of Washington Washington, DC 20015

Lawrence Livermore National Laboratory Livermore, CA 94550

Marker Lecture, Department of Physics Pennsylvania State University, Apr. 7, 2016

PRESSURES IN THE VISIBLE UNIVERSE

Hydrogen gas in intergalactic space 10⁻³² atm

Center of Jupiter -8 x 10⁷ atm

Center of Earth 3.6×10^6 atm.

Center of Neutron Star -10²⁸ atm $\begin{array}{l} 10^3 \mbox{ atm } \approx \mbox{ kbar} \\ 10^6 \mbox{ atm } \approx \mbox{ Mbar} \\ 10 \mbox{ kbar } = 1 \mbox{ GPa} \\ 1 \mbox{ Mbar } = 100 \mbox{ GPa} \end{array}$

Effects of Extreme Pressures on Molecules

 $P\Delta V \sim eV$ chemical bond strengths

High-Pressure Technology: STATIC AND DYNAMIC COMPRESSION

- Static compression
 - Low temperature
 - High temperature
- Dynamic compression
 - Shock-wave
 - Isentropic
- Combined static/dynamic

I. Introduction

- II. Isolated Molecule/Zero Pressure
- III. Hydrogen under Pressure
- **IV. New Phases**
- V. High Pressures and Temperatures

I. Introduction

- II. Isolated Molecule/Zero Pressure
- III. Hydrogen under Pressure
- IV. New Phases
- V. High Pressures and Temperatures

Aristotle (384-322 BC)

1. The aether

Adding to the four elements proposed by Empedocles: Earth, water, air, and fire

1.01

"Outside all the other spheres, the heavenly, fifth element, the aether is manifested in the stars and planets, moves in the perfection of circles."

2. Most abundant element

3. Tests of fundamental theory

1.01

$$\hat{H} = \sum_{i}^{nuclei} \hat{T}(i) + \sum_{j}^{electrons} \hat{T}(j) +$$

$$\sum_{k=1}^{n} \sum_{i=1}^{e} \hat{V}(k,l) + \sum_{m=n>m}^{e} \sum_{m=n>m}^{e} \hat{V}(m,n) +$$

$$\sum_{i=1}^{n} \sum_{p>0}^{n} \hat{V}(o,p)$$

4. Chemical dichotomy

Halogens

1.01

H	<						- 17	?	-						-	н	2 He
3 Li	Be]										5 B	°c	7 N	0	F	10 Ne
11 Na	12 Mg	1										13 AJ	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	48 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	63 	54 Xe
58 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	76 Re	78 Os	77 Ir	78 Pt	79 Au	Hg	01 TI	82 Pb	es Bi	Po	es At	ee Rn
87 Fr	Ra	Ac	104 Ru	106 Ha	106 Unh	107 Uns	108 Uno	109 Une	110 Unf								-

Ce	59 Pr	Nd	61 Pm	62 Sm	Eu	64 Gd	65 Tb	66 Dy	Ho	Er	Tm	Yb	71 Lu
90 Th	Pa	92 U	93 Np	Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

[Ashcroft, Physics World (1995)]

 $\hat{H} = \sum_{i=1}^{nuclei} \hat{T}_{(i)} + \sum_{j=1}^{electrons} \hat{T}_{(j)}$

5. Quantum system

Fluid ground state [Brovman et al., *JETP* (1974)]

'The Element of Uncertainty' 6. Potential energy material

1.01

- High energy density material (400 kJ/mole: 35 x TNT)
- High-T_c superconductor? [Ashcroft, *Phys. Rev. Lett.* (1968)]
- Superconducting/superfluid?

[Babaev, Sudbo, & Ashcroft, Phys. Rev. Lett. (2005)]

8. Driven the development of many high-pressure techniques

- High compressibility (e.g., deformation of apparatus)
- Reactivity with metals (weaken apparatus, electrical leads)
- Weak x-ray scattering power
- Strong Raman cross-section but variable infrared absorption
- Large neutron cross-section (coherent, incoherent)

Techniques Used Over Different P-T ranges

Optical spectroscopy Raman, infrared spectroscopy Brillouin scattering X-ray diffraction (single xtal, polyxtal) X-ray inelastic scattering Neutron diffraction Neutron inelastic scattering Non-linear spectroscopy (e.g., CARS) NMR Electrical transport Ultrasonic Shock compression (Hugoniot) Isentropic compression

1.01

 $\rho/\rho_0 = 14$

at 300 GPa

I. Introduction

II. Isolated Molecule/Zero Pressure

III. Hydrogen under Pressure

IV. New Phases

V. High Pressures and Temperatures

Hydrogen in condensed phase

1898 – First liquified – 20 K 1899 – First solidified – 14 K

Sir James Dewar

X-ray diffraction

J=0 p-H₂ (hcp)

 $V_0 = 23.2 \text{ cm}^3/\text{mol}$ R(H₂-H₂) = 3.0 Å R(H-H) = 0.74 Å

[Keesom et al., Comm. Kamerlingh Onnes Lab (1930)]

THE ROTATIONAL MOTION OF MOLECULES IN CRYSTALS

By Linus Pauling Gates Chemical Laboratory, California Institute of Technology (Received May 7, 1930) [Phys. Rev. (1930)]

J=1 ordered state o-H₂ (Pa3)

[Mills and Schuch, Phys. Rev. Lett. (1964)]

Molecular structure and bonding

INTRAMOLECULAR POTENTIAL (pure; i.e., isolated molecule)

Origin of the chemical bond

- Valence bond (Heitler-London)
- Molecular orbital (Mulliken)
- Strong covalent bond: 4.53 eV
- 14 bound vibrational states

[Kolos & Wolniewicz, J. Chem. Phys. (1964-1974)]

ISOLATED MOLECULE Nearly spherical electron density

Intramolecular and intermolecular interactions

INTRAMOLECULAR POTENTIAL (pure; i.e., isolated molecule)

INTERMOLECULAR POTENTIAL (effective potential in condensed phase)

- Strong Raman cross-section
- No dipole-allowed IR absorption

- Binding energy 3.0 meV (35 K)
- Interactions: *Isotopic* + *Anisotropic*
 - Leading anisotropic term is electric quadrupole-quadrupole (EQQ) interaction (odd J)

[Silvera, Rev. Mod. Phys. (1980)] Carnegie Institution

Ortho-para distinction

[Silvera, Rev. Mod. Phys. (1980)]

Vibrational excitations

$O, P, Q, R, S \dots \Delta J = -2, -1, 0, -1, 0, -2$

Lattice Modes

Vibrons

 $Q_{\Delta \nu}(J); e.g., Q_1(1)$

PRESSURE EFFECTS

- Rotational ordering
 - breakdown of J
- Molecular stability
 - lattice mode = vibron?
- Molecular interactions
 - molecular coupling?

UV Absorption (zero pressure)

Refractive Index of the Hydrogen Molecule

M. KARPLUS Department of Chemistry and Watson Laboratory,* Columbia University, New York, New York (Received 13 March 1964)

$$\epsilon_{2}(\omega) = \frac{e^{2}}{\pi m^{2} \omega^{2}} \sum_{v,c} \int_{BZ} d\mathbf{k} |\mathbf{e} \cdot \mathbf{M}_{cv}(\mathbf{k})|^{2} \delta(E_{c}(\mathbf{k}) - E_{v}(\mathbf{k}) - \hbar\omega),$$
$$\mathbf{e} \cdot \mathbf{M}_{cv}(\mathbf{k}) = \langle \psi_{c\mathbf{k}} |\mathbf{e} \cdot \mathbf{p} | \psi_{v\mathbf{k}} \rangle$$

[J. Chem. Phys. Rev. (1964)]

[Sharp, J. Phys. Chem. Ref. Data (1979)]

I. Introduction

II. Isolated Molecule/Zero Pressure

III. Hydrogen under Pressure

- **IV. New Phases**
- V. High Pressures and Temperatures

Room-Temperature Compression of Hydrogen Gas

Freezing at Room Temperature 5.4 GPa

[Mao and Bell, Science (1979)]

High-pressure measurements of the Raman vibron

Effect of compression on vibron frequencies

Molecule A

Molecule B

Compression Frequency Increase Orbital interactions *Frequency Decrease*

[Labet, Hoffmann, & Ashcroft, J. Chem. Phys. (2012)]

Enhancement of vibrational coupling: combining Raman and IR spectroscopy

[Hanfland et al., Phys. Rev. Lett (1992)]

Crystal structure by high-pressure diffraction

hexagonal close packed

Higher pressure transition: phase III

Infrared Vibron

[Hanfland et al. Phys. Rev. Lett. (1993); Hemley et al., *ibid.* (1994) Chen et al. *ibid* (1995)]

Infrared spectroscopy of phase III: charge transfer instead of metallization

Predicted Drude models

[Hanfland et al. Phys. Rev. Lett. (1993); Hemley et al., ibid. (1994) Chen et al. ibid (1995)]

Vibrational spectroscopy of phase III: low to high frequency excitations

RAMAN

Absorbance

[Souza et al. Phys. Rev. Lett. (1997); Kohanoff et al., ibid (1999); Edwards & Ashcroft Nature (1999)]

- J no longer a good quantum number
- Vibron softening/orient. ordering
- Molecules persist to >320 GPa

[Loubeyre et al., Nature (2002)]

P-T phase diagram of the solid hydrogens from vibrational spectroscopy to 200 GPa

Theory challenge for phase III: preventing band overlap with the correct crystal structure

Molecular orientation and band overlap

[Kaxiras et al., Phys. Rev. Lett. (1992)]

[Pickard & Needs, *Nature Physics* (2007)]

Dielectric Properties *Refractive Index and Oscillator Models*

$$I(\nu) = A \sin\{4\pi B[1 + (\nu - \nu_0)C]\nu + D\}.$$

$$C = (1/n_0)(dn/d\nu)_{\nu_0}$$

$$n^2 - 1 = E_d E_0 / (E_0^2 - \hbar^2 \omega^2)$$
[Hemley et al., Nature (1991)]

- Oscillator model fits to $\varepsilon(\omega)$
- Constrains the direct band gap not indirect gaps
- Direct measurements?

Visible absorption at ~300 GPa

[Friedli & Ashcroft, *Phys. Rev. B* (1977); [Ramaker et al., *Phys. Rev. Lett.* (1975)]

342 GPa [Narayana et al., *Natur*e (1998)]

Carnegie Institution

>250 GPa [Mao & Hemley, Science (1989), *Rev. Mod. Phys.* (1994)]

Optical absorption

320 GPa

[Loubeyre et al. Nature (2002)]

- Variable sample thickness/ diamond absorption
- Direct gap, not indirect gap

Early Electrical Transport Measurements

[Eremets et al., Frontiers in High-Pressure Science (2002)]

X-Ray Raman of dense hydrogen: direct measurements of the band gap

X-Ray Raman of dense hydrogen: direct measurements of the band gap

X-Ray Raman of dense hydrogen: direct measurements of the band gap

I. Introduction

- II. Isolated Molecule/Zero Pressure
- III. Hydrogen under Pressure
- **IV. New Phases**
- V. High Pressures and Temperatures

Evidence for new transitions

Electrical Conductivity Onset

[Eremets & Troyan, Nature Materials (2011)]

[Howie et al., Phys. Rev. Lett. (2012)]

Raman Evidence for New Phase

Synchrotron infrared spectroscopy of phase IV

Hydrogen Phase Diagram

Hydrogen Phase Diagram

Phase IV is a graphene-based layer structure

[Naumov & Hemley, *Acct. Chem. Res.* (2014); see also, LeSar & Herschbach, *J. Phys. Chem.* (1981); Dixon et al., *Faraday Disc.* (1977)]

Molecular calculations for H_n rings

Distortions and relationship to graphene / graphite structures

[Naumov, Cohen & Hemley, Phys. Rev. B (2013)]

DFT-GGA Calculations

PEIERLS DISTORTION -> Residual Pairing

Is hydrogen metallic at these *P-T* conditions?

Reflection

Reflection/ Transmission

360 GPa, 292 K

Is hydrogen metallic at these *P-T* conditions?

- Transparent to at ۲ least 0.1 eV
- Plasma frequency a٠ < 0.2 eV
- Semiconducting or • semimetallic?
- **Transition to** ٠ semimetal at 270 GPa (phase VI'?)

A new mechanism for hydrogen metallization

- Borderline of semiconductorsemimetal at 300 GPa
- Parallels to graphite (not alkali metals)
- > Higher pressures in solid?

[Cohen, Naumov, & Hemley *PNAS* (2013); Naumov & Hemley, *Acct. Chem. Res.* (2014)]

Other structures of dense hydrogen: Topological semimetals and surface metallization

Predicted metallic superfluid

2

I. Introduction

- II. Isolated Molecule/Zero Pressure
- III. Hydrogen under Pressure
- **IV. New Phases**
- V. High Pressures and Temperatures

Juno Mission will let Jupiter tell us

August 5, 2011 Launch

• Size and existence of a core?

DENSE HYDROGEN: Dynamic (Shock) Compression

ELECTRICAL CONDUCTIVTY

Pump tube

Hydrogen gas

Metal impactor

HUGONIOT MEASUREMENTS

Lett. 87, 225501 (2001)]

[Weir et al., Phys. Rev. Lett. (1996)]

High *P-T* Transition in Fluid Hydrogen

LASER DRIVEN DYNAMIC COMPRESSION

National Ignition Facility

Carnegie Institution

- **Insulating to Conducting?**
- **Dissociation:** H₂ to H?
- **Pressure differences?**
- Relationship to the solid transition?

High P-T Transition in Fluid Hydrogen

[Jeanloz & Hemley (Pls), NIF Discovery Science Campaign] **Evidence for changes in the hydrogen optical properties during the reverberation compression**

We direct experiments at the National Ignition Facility to understand the materials in ultra-extreme conditions

CONCLUSIONS AND OUTLOOK

- 1. Dense hydrogen is a system of unexpected complexity.
- 2. There is no sign of the 'Wigner-Huntington metallization' to 340 GPa in phases III and IV (below 300 K).
- 3. The structure of phase IV is broadly consistent with the structures predicted theoretically.
- 4. There is a remarkable parallel between dense hydrogen and graphene that reveals a new mechanism for metallization.
- 5. New dynamic compression results reveal a transition in fluid starting at 140 GPa.

ACKNOWLEDGEMENTS

Collaborators

CARNEGIE INSTITUTION

Chang-sheng Zha Ho-kwang Mao Reini Boehler Timothy Strobel Viktor Struzhkin Ronald E. Cohen Zhenxian Liu Alexander Goncharov Muhtaer Ahart M. Somayazulu R. Stewart McWilliams Ivan Naumov

OTHER INSTITUTIONS

John Tse (Saskatoon) Neil Ashcroft (Cornell) Roald Hoffman (Cornell) Jonathan Crowhurst (LLNL) Michael Armstrong (LLNL) Eugene Gregoryanz (Edinburgh)

Financial Support

DOE/NNSA, DOE/OS/BES, A. P. Sloan Foundation, NSF, Carnegie Institution

