New Views of Chemical Bonding Under Pressure

Russell J. Hemley

Geophysical Laboratory Carnegie Institution of Washington Washington, DC 20015

Lawrence Livermore National Laboratory Livermore, CA 94550

Marker Lecture, Department of Chemistry Pennsylvania State University, Apr. 8, 2016

CHEMICAL TRANSFORMATIONS

Temperature

 $A \rightarrow B$ heat

Pressure

Composition

The Chemical Imagination at Work in Very Tight Places

Wojciech Grochala,* Roald Hoffmann,* Ji Feng,* and Neil W. Ashcroft*

1 GPa = 1 Elephant per pencil =10,000 atm

Intuition and Expectations

Close packing •

Increasing coordination

Orbital mixing

Ultimately metallic •

Free Energies and Extreme Conditions

Generating Extreme Pressures in the Laboratory

Static

Dynamic

>100's Mbars (1 Gbar) ~ keV energies – core electrons

National Ignition Facility

>100's GPa (~0.5 TPa) ~ eV energies – valence electrons

High-Pressure Technology: **MYRIAD NEW TOOLS**

Same

Advanced Photon Source

Spallation Neutron Source

EXAMPLES

- 1. 'Simple' Molecules
- 2. Novel Compounds
- 3. Metals that are Not
- 4. Continuing with Carbon
- 5. Softest Matter

EXAMPLES

Simple' Molecules
 Novel Compounds
 Metals that are Not
 Continuing with Carbon
 Softest Matter

Compressing Nitrogen

Compressing Nitrogen

Dense oxygen exhibits remarkable properties

Magnetic Collapse to form O₈ Clusters (30 GPa)

Dense oxygen exhibits remarkable properties

O K-edge X-ray Raman

High-pressure behavior of water

High-pressure behavior of water: *new questions and surprises*

- ~20 stable and metastable phases
- Novel transitions
 - non-molecular
 - amorphization
 - superionic
 - liquid/liquid trans
- High *P-T* fluid
- New chemistry
- Breakdown of H₂O
- Supporting life at extreme *P-T*

High-pressure behavior of water: *new questions and surprises*

Hydrogen: The 'Simplest' Molecule

ISOLATED MOLECULE Nearly spherical electron density

- Strong covalent bond: 4.53 eV
- 14 bound vibrational states

[Kolos & Wolniewicz, J. Chem. Phys. (1964-1974)]

Phase III: 'Ionic' phase of dense hydrogen

[Kaxiras et al., Phys. Rev. Lett. (1992)]

[Pickard & Needs, Nature Physics (2007)]

Infrared Vibron

[Hanfland *et al. Phys. Rev. Lett.* (1993); Hemley et al., ibid. (1994) Chen *et al. ibid* (1995)]

Carnegie Institution

Phase IV is a graphene-based layer structure

C-graphene

H₆ 'aromatic cluster'

[Naumov & Hemley, *Acct. Chem. Res.* (2014); see also, LeSar & Herschbach, *J. Phys. Chem.* (1981); Dixon et al., *Faraday Disc.* (1977)]

[Pickard et al., *Phys. Rev. B* (2012)]

Graphene-based layer structures for dense hydrogen

[Cohen, Naumov & Hemley, PNAS (2013)]

[LeSar & Herschbach, *J. Phys. Chem.* (1981);see also, Dixon et al., *Faraday Disc.* (1977)]

Dudley R. Herschbach

Analogy between 1s electrons in hydrogen and π electrons in carbon

[Naumov & Hemley, Accts. Chem. Res. (2014)]

Total energies per atom for H_n rings (n = 3 - 10)

H_6 ring energetics with respect to the B_{2u} mode

[Naumov & Hemley, Accts. Chem. Res. (2014)]

EXAMPLES

Simple' Molecules
 Novel Compounds
 Metals that are Not
 Continuing with Carbon
 Softest Matter

Novel Molecular Compounds

Xe(H₂)₈

Novel Molecular Compounds

Xe(H₂)₈

[Somayazulu et al., Nature Chem. (2009)]

Xe electron density

Novel Molecular Compounds

CH₄(H₂)₄ 33.4 wt% H₂

[Somayazulu et al., Science (1996); W. Mao et al. Chem. Phys. Lett. (2005)]

$(H_2O)_2H_2$ α -quartz-type

[Strobel et al., *J. Phys. Chem.* (2011)]

 $(H_2S)_2H_2$ Al₂Cu type

[Strobel et al., Phys. Rev. Lett. (2010)]

> PRECURSOR TO HIGH T_c H₃S T_c = 203 K

[Drozdov et al., Nature. (2015)]

H₂O-H₂

11.3 wt% H₂

[Vos et al., *Phys. Rev. Lett.* (1993)]

Xe(H₂)₈ [Somayazulu et al., *Nature Chem.* (2009)]

New high T_c superconductors

$(H_2S)_2H_2$

Al₂Cu type [Strobel et al., *Phys. Rev. Lett*. (2010)]

T_c = 203 K [Drozdov et al., *Natur*e (2015)] [Quan and Pickett, arXiv (2015)]

New high T_c superconductors

T_c = 220-235 K (*predicted*) [Wang et al., *PNAS* (2013)] T_c = 203 K [Drozdov et al., *Nature* (2015)] [Quan and Pickett, arXiv (2015)]

New high T_c superconductors

T_c = 220-235 K (*predicted*) [Wang et al., *PNAS* (2013)]

NaC₆ Na

> T_c = 116 K (predicted) [Lu et al., Phys. Rev. B (2016)] ➤ Predicted stable at 1 bar

Hydriding of 'Inert' Metals: *Re, Ir, Pt, W*

Structures of WH_n Planetary Implications

Extreme reactivity will 'erode' metallic Jovian cores

[Zaleski-Eigierd et al., Phys. Rev. B (2012)]

LETTERS

Synthesis and characterization of a binary noble metal nitride

EUGENE GREGORYANZ^{1,2*†}, CHRYSTELE SANLOUP³, M. SOMAYAZULU⁴, JAMES BADRO¹, GUILLAUME FIQUET¹, HO-KWANG MAO² AND RUSSELL J. HEMLEY²

EXAMPLES

Simple' Molecules
 Novel Compounds
 Metals that are Not
 Continuing with Carbon
 Softest Matter

The Simple Metals?

Body Centered Cubic (BCC)

 $\mathrm{M}\,\mathrm{A}\,\mathrm{Y}\quad 1\,5\,,\quad 1\,9\,3\,3$

PHYSICAL REVIEW

VOLUME 43

On the Constitution of Metallic Sodium

E. WIGNER AND F. SEITZ, Department of Physics, Princeton University (Received March 18, 1933)

The Simple Metals?

[Gregoryanz et al., *Phys. Res. Lett.* (2005); Science (2008); Ma et al., *Nature* 2009); Lazicki et al., *PNAS* (2009)] >11 Phases in Na

- Na melts <300 K
- Transparent >200 GPa!

From Metals to Insulators and Back

Interstitial Electron Localization

- Repulsion effects: Coulomb repulsion
 + Pauli exclusion + orthogonality
- The valence electrons avoid the regions in the vicinity of the atoms
- Predicted loss of metallic character

[Neaton & Ashcroft, Nature (2000)]

Electride: *'Interstitial Quasiatom'*

[Miao & Hoffmann, Accts. Chem. Res. (2014)]

From Metals to Insulators and Back

Formation of Quasimolecules in Insulating States

From Metals to Insulators and Back

Overall Crystal Symmetry Constraints

EXAMPLES

Simple' Molecules
 Novel Compounds
 Metals that are Not
 Continuing with Carbon
 Softest Matter

Alternative Routes to Synthesis of Novel Phases

Diamond Synthesis General Electric, Co. (1954)

- Limited in size and quality from ٠ Nature and conventional synthesis
- **Optimized properties: strength,** ٠ toughness, doping

[Liang et al., Superhard Materials (2013)]

New Carbon Materials

Carbon Nanomaterials Dimensionality and Hybridization

Discovery of New 'Minerals'

[Santoro et al. *PNAS* (2012)]; Datchi et al., *Phys. Rev. Lett.* (2012) **CO**₂

Abiogenic formation of hydrocarbons at high P-T

New Predicted Dense C-H Phases >100 GPa

Compression of diamond to 50 Mbar

[Smith, Eggert, Braun, Jeanloz, Duffy]

Structure and Bonding at Ultrahigh Pressures

Carbon 'Electride' Predicted at 25 TPa (250 Mbar)

Insulating Ni Predicted at 34 TPa (340 Mbar)

FIG. 2. Nonrelativistic APW band structure of fcc Ni at $V_0/V = 7.5$. The dashed line is the Fermi level.

[McMahan & Albers, Phys. Rev. Lett. (1982)]

[Martinez-Canales et al., *Phys. Rev. Lett.* (2012)]

EXAMPLES

Simple' Molecules
 Novel Compounds
 Metals that are Not
 Continuing with Carbon
 Softest Matter

EXTREME SOFT MATTER AND BIOPHYSICS

EXTREME SOFT MATTER AND BIOPHYSICS

Microbial viability to >25 kbar

Direct observations

[Sharma *et al., Science* (2002); **Pressure-induced directed evolution** [Vanlint *et al., mBio* (2011)]

What are the limits of survivability?

EXTREME SOFT MATTER AND BIOPHYSICS

- What are the P-T limits of growth and metabolism?
 - Does "corresponding states" of flexibility hold for growth at high P-T conditions ?
 - How to quantitate flexibility?

CONCLUSIONS AND OUTLOOK

- 1. High pressure studies are revealing a variety of new chemical phenomena over a range of conditions
- 2. New models are needed to understand and predict this behavior
- 3. The findings provide new insights on bonding under 'normal' conditions
- 4. There is the prospect for the creation of new useful materials
- 5. There are potentially important implications for soft matter and biology

ACKNOWLEDGEMENTS

Collaborators

CARNEGIE INSTITUTION

Ivan Naumov M. Somayazulu Viktor Struzhkin Timothy Strobel Zhenxian Liu Reini Boehler Yingwei Fei Guoyin Shen Ronald E. Cohen Ho-kwang Mao Muhetaer Aihaiti Alexander Goncharov Changsheng Zha Yufei Meng Stephen Gramsch

OTHER INSTITUTIONS

K. Landstron (Lehigh) John Badding (Penn State) E. Gregoryanz (Edinburgh) Yusheng Zhao (LANL) Anurag Sharma (Boston) Neil Ashcroft (Cornell) Roald Hoffman (Cornell) Raymond Jeanloz (UCB) Paul Loubeyre (CEA) G. W. Collins (LLNL) Toshiko ichiye (Georgetown)

Financial Support

DOE/NNSA, DOE/OS/BES, NSF, A. P. Sloan Foundation, Carnegie Institution

Carnegie Institution