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CHEMICAL TRANSFORMATIONS 
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•  Temperature 
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 EFFECTS OF PRESSURE  ON 
GASES  
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  Hydrogen gas in  
  intergalactic space 

 Interplanetary space 

    Center of neutron star 

  Atmosphere at 300 miles 

  Center of Jupiter 

Center of  
white dwarf 

   Center of Sun  Deepest ocean 

Best mechanical pump vacuum 

Water vapor at triple point 

 Center of 
 the Earth 

Atmospheric pressure  
(sea level) 

  103 atm ≈ kbar 
  106 atm ≈ Mbar 
  10 kbar = 1 GPa 
   1 Mbar = 100 GPa 
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Types of Chemical Bonds 

a.  Covalent 
 
b.  Ionic 
 
c.  van der Waals 
 
d.  H-bonds 
 
e.  Metallic 

A - B 

A+ B- 

A…B 

A…H 

A ≈ A 
M … M … M
 



1	GPa	=		
1	Elephant	per	pencil	=10,000	

atm	



	
•  Close	packing		
	

	
•  Increasing	coordina1on		
	
	

•  Orbital	mixing	
	
	

•  Ul1mately	metallic	

Intui&on	and	Expecta&ons		
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Free Energies and Extreme Conditions 
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 P 

 PΔV ~ eV 
 chemical  
 bond  
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Generating Extreme Pressures in the Laboratory 

   >100’s GPa (~0.5 TPa) 
~ eV energies – valence electrons  

 

   Static 
 

   Dynamic 
 

   >100’s Mbars (1 Gbar) 
~ keV energies – core electrons  

 
 

 
 

National Ignition Facility 
	



      

 

High-Pressure Technology: 
MYRIAD NEW TOOLS 2.0
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Advanced Photon Source 
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1.  ‘Simple’ Molecules 

2.  Novel Compounds  
3.  Metals that are Not 
4.  Continuing with Carbon  
5.  Softest Matter 
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N2  

Compressing Nitrogen 



5-70 GPa 

100 GPa 
  heating 

 
N2  

Compressing Nitrogen 



Magnetic Collapse to form O8 Clusters (30 GPa) 

 O2  

Dense oxygen exhibits remarkable properties 



[Gorelli et al., Phys. Rev. B (2008)] 
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[Meng et al.  PNAS (2008)] 

O K-edge X-ray Raman  

•   Increasing orbital overlap with pressure 
•   Intermolecular π*-bonding in (O2)4 cluster   
•   Closed-shell interactions stabilize the cluster 
•   Superconducting phase at 90 GPa (Tc ~ 1 K) 
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High-pressure behavior of water 



•  ~20 stable and  
   metastable phases 
 

•   Novel transitions 
    - non-molecular 
    - amorphization 
    - superionic 
    - liquid/liquid trans 
 

•  High P-T fluid 
 

•  New chemistry 
 

•  Breakdown of H2O 

•   Supporting life 
   at extreme P-T 

High-pressure behavior of water: 
new questions and surprises  



First neutron scattering at 
100 GPa: evidence for 

interstitial protons 

[Guthrie et al. PNAS (2013)] 

Spallation Neutron  
Source (ORNL) 

Ice X 

High-pressure behavior of water: 
new questions and surprises  



Hydrogen:  The ‘Simplest’ Molecule 

	
 
•  Strong covalent bond: 4.53 eV 
•  14 bound vibrational states 

  
       INTRAMOLECULAR  POTENTIAL 
         (pure; i.e., isolated molecule) 
       

ISOLATED	MOLECULE	
Nearly	spherical	electron	density	

  Charge  
   Density 

 [Silvera, Rev. Mod. Phys. (1980)]  [Kolos & Wolniewicz, J. Chem. Phys. (1964-1974)] 



[Zha, Liu, Ahart, Boehler, & Hemley,  
Phys. Rev. Lett. In press] 

 

[Zha, Liu, Ahart, Boehler, & 
Hemley, Phys. Rev. Lett. (2013)] 

 

‘Ionic’ 

‘Graphenic’ 
Disordered 

Ordered 

Hydrogen Phase Diagram 
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Phase III:  ‘Ionic’ phase of dense hydrogen 

+ 

- 

- 
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 [Pickard & Needs,  
Nature Physics (2007)]   

\ 

+ 

- 
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 [Kaxiras et al., Phys. Rev. Lett.  (1992)]   
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[Hanfland et al. Phys. Rev. Lett. (1993);  
Hemley et al., ibid. (1994) Chen et al. ibid (1995) ] 

Infrared Vibron 



Phase IV is a  
graphene-based  
layer structure 

[Pickard et al., Phys. Rev. B (2012)] 

 
[Naumov & Hemley, Acct. Chem. Res. (2014); 

see also, LeSar & Herschbach, J. Phys. Chem. (1981);   
Dixon et al., Faraday Disc. (1977)] 

H6  ‘aromatic cluster’  

C-graphene 

H-graphene 



Graphene-based  
layer structures  
for dense hydrogen 
[Cohen, Naumov & Hemley, PNAS (2013)] 

H6  ‘aromatic cluster’  

C-graphene 

H-graphene 

[LeSar & Herschbach, J. Phys. Chem. (1981);see also, 
Dixon et al., Faraday Disc. (1977)] 

Dudley	R.		
Herschbach		



 Analogy between 1s electrons in hydrogen       
and π electrons in carbon 

 

[Naumov & Hemley, Accts. Chem. Res. (2014)] 

H6    (C6H6) 



Total energies per atom for Hn rings (n = 3 − 10)  

 

Hückel’s rule:  
 

Aromatic compounds  
must have 4n +2 π 
electrons,  n = 0, 1, 2, 3… 
to fill a π shell 

n = 6, 10 

Correlation corrections:  
 

Lower the total energy but have  
little effect on energy differences  

DFT-GGA 

[Naumov & Hemley, Accts. Chem. Res. (2014)] 



H6 ring energetics with respect to the B2u mode   

•  D6h to D3h  
 

•  The closed shell 
electronic structure 
becomes more stable   

 

•  Both are aromatic 

[Naumov & Hemley, Accts. Chem. Res. (2014)] 

(2r/√3)		 B3LYP/6-331G(3df,3pd) 
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Novel Molecular 
Compounds  

 
 

              Xe(H2)8 



Novel Molecular 
Compounds  

 
 

              Xe(H2)8 

 
 

Xe electron density 

[Somayazulu et al.,  Nature Chem.  (2009)] 



[Somayazulu et al., Nature Chem.  (2009)] 

 
              Xe(H2)8 

[Somayazulu et al., Science  (1996); 
W. Mao et al. Chem. Phys. Lett.  (2005)] 

 

   CH4(H2)4 
  33.4 wt% H2 

      Novel Molecular Compounds 

(H2S)2H2 

[Strobel et al., Phys.         
Rev. Lett. (2010)] 

Al2Cu type 

(H2O)2H2 

[Strobel et al.,                           
J. Phys. Chem.                 

(2011)] 

α-quartz-type 

H2O-H2 

[Vos et al., 
Phys. Rev.                   

Lett. (1993)] 

11.3 wt% H2 

Ø PRECURSOR TO 
HIGH Tc H3S           
Tc = 203 K 
[Drozdov et al., Nature. (2015)] 



[Quan and Pickett, arXiv (2015)] 
[Drozdov et al., Nature (2015)] 
Tc	=	203	K	

H3S		(H2S)2H2	

[Strobel et al., Phys. Rev. Lett. (2010)] 

Al2Cu type 

New high Tc superconductors 



[Quan and Pickett, arXiv (2015)] 
[Drozdov et al., Nature (2015)] 

CaH6		

Tc	=	220-235	K	(predicted)	

H		

Ca		

[Wang et al., PNAS (2013)] 

H3S		

Tc	=	203	K	

New high Tc superconductors 



CaH6		

Tc	=	220-235	K	(predicted)	

H		

Ca		

[Wang et al., PNAS (2013)] 

Tc	=	116	K	(predicted)	

NaC6	

C		

Na		

[Lu et al., Phys. Rev. B (2016)] 
Ø  Predicted stable at 1 bar 

New high Tc superconductors 



Ø  Extreme reactivity will ‘erode’ 
metallic Jovian cores 

Hydriding	of	‘Inert’	
Metals:			

Re,	Ir,	Pt,	W		

!

Structures	of	WHn			
										

[Zaleski-Eigierd et al., Phys. Rev. B (2012)] 

Planetary	Implica&ons	
										



Pt            Pt4+           N2            N2
4- 
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The Simple Metals? 

Body Centered Cubic (BCC) 



[Gregoryanz et al., Phys. Res.  
Lett. (2005); Science (2008); 

Ma et al., Nature 2009);  
Lazicki et al., PNAS (2009)] 

[Wigner & Seitz,  
 Phys. Rev. (1933)] 

•  >11 Phases in Na  
•  Na melts <300 K 
•  Transparent >200 GPa! 

BCC FCC 

>100 GPa 

 

The Simple Metals? 



[Neaton & Ashcroft, Nature (2000)] 

Electride:  
‘Interstitial Quasiatom’ 

[Miao & Hoffmann, Accts. Chem. Res. (2014)] 

•  Repulsion effects:  Coulomb repulsion 
+ Pauli exclusion + orthogonality 

•  The valence electrons avoid the 
regions in the vicinity of the atoms  

•  Predicted loss of metallic character 

Interstitial Electron 
Localization 

•  Under pressure, 
1s levels drop 
below other 
atomic s levels 

Electrons 

Lithium    Cmca-4 
 

From Metals to Insulators and Back 



Formation of Quasimolecules in Insulating States 
Interstitial quasiatoms and quasimolecules form 
when the valence p electrons move down relative 
to s electrons: Li, Na, Mg, Al… 

Two nearest ISQ’s in Aba2-Li form a 
“molecule”within the structure  

two ISQs 

Like two H atoms, two ISQs can form both 
bonding and antibonding  orbitals 

Charge density for 
 bonding orbital 

Charge density for 
 antibonding orbital 

The “molecular” orbitals can be understood as   
maximally  localized Wannier functions  

isosurface=±2.5 

From Metals to Insulators and Back 

[Miao, Naumov, Hoffmann, & Hemley,   
submitted] 
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Example:  dhcp (hP4), P63/mmc Na  

s-p-(dz2) 

s-p-(dz2) 

[Naumov & Hemley, Phys. Rev. Lett. (2015)] 

From Metals to Insulators and Back 

Overall Crystal Symmetry Constraints 
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Alternative Routes to Synthesis of Novel Phases 
Diamond Synthesis  
General Electric, Co.  
(1954) 

[Liang et al., Superhard Materials (2013)]  

45 

•  Limited in size and quality  from 
Nature and conventional synthesis 

•  Optimized properties: strength, 
toughness, doping  

substrate 

CH4  + H CH3  + H2 

H2   2 H 
e-,  Δ

•  Co-deposition (sp2, sp3) 

•  Etching (sp2, sp3) 

Microwaves 

H2  + CH4 

DIFFUSION 
H H H 

Plasma  

100-300 torr; 800 – 1000 oC 

CVD Diamond 
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[Meng et al., NDNC (2009)]  

2.4 carat CVD  

0.3 carat       
natural  



  [Fitzgibbons et al.,  
   Nature Mater. (2014)] 

New Carbon Materials 

New carbon structure: 
sp3 carbon nanothreads  
from benzene at 20 GPa 

  



Carbon Nanomaterials 

Dimensionality and Hybridization


graphene


graphane


2-d
1-d


sp2  


sp3  


diamondoids


0-d


C60


nanothreads


nanotubes


Energy	Fron&er	
Research	Center	



   

Discovery of New ‘Minerals’ 

 CO2 

[Santoro et al. PNAS (2012)];  
Datchi et al., Phys. Rev. Lett. (2012) 



Abiogenic formation of hydrocarbons at high P-T 

CaCO3 + FeO + H2O         CH4 + CaO + Fe3O4 

[Scott et al. PNAS (2004)] 
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[Kolesnikov et al., Nature Geoscience (2009)] 

Laser 
Heating 
Methane 



New	Predicted	Dense	C-H	Phases	>100	GPa	

DFT-GGA 
~500 structures 
     (CALYPSO) 
Static – 1000 K  

[Liu et al., in preparation] 

metastable 
  
 

[Oganov et al., J. Chem. 
Phys. (2013)] 

C2H4   C2H6   

C4H4   

C8H2   
C   H   

Ø  Hydrogen-rich planetary 
interiors 

 

Ø  Hydrogen containment   
in high P-T experiments  

stable at 100 GPa   
 metastable 

  
 

stable at 100 GPa   
 



Compression of diamond to 50 Mbar 

Diamond	to	50	Mbar	

[Smith,	Eggert,		Braun,	Jeanloz,	Duffy]		

LASER DRIVEN 
RAMP  
“ADIABATIC” 
COMPRESSION 
 



Structure and Bonding at Ultrahigh Pressures 
 

Carbon ‘Electride’ Predicted 
at 25 TPa (250 Mbar) 

[Mar1nez-Canales	et	al.,	
Phys.	Rev.	LeC.	(2012)]	

Insulating Ni Predicted 
 at 34 TPa (340 Mbar) 

[McMahan	&		Albers,	Phys.	Rev.	LeC.	(1982)]	
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EXTREME SOFT MATTER AND BIOPHYSICS 



EXTREME SOFT MATTER AND BIOPHYSICS 
 

  Structure-function in  
   biological systems 

[Fourme et al.  
. Mol. Bio. (2002)] 

Lysozyme 

Ambient 7 kbar 

Microbial viability to >25 kbar 

[Sharma et al., Science (2002); 
 
 
[Vanlint et al., mBio (2011)]  

Direct observations 

Pressure-induced directed evolution 

Ø What are the limits of 
survivability? 



EXTREME SOFT MATTER AND BIOPHYSICS 

[Rodgers et al. 
In preparation] 

Protein dynamics under 
pressure 

How can 
simulations 
inform structure-
function relations 
at high 
pressures? 

DHFR 

[Ohmae et al.  
BBA (2012)] 

•  Does ”corresponding 
states” of flexibility 
hold for growth at 
high P-T conditions ? 

•  How to quantitate 
flexibility? 

Ø What are the P-T 
limits of growth and 
metabolism? 



CONCLUSIONS AND OUTLOOK  

1.  High pressure studies are revealing a variety 
of new chemical phenomena over a range of 
conditions 

2.  New models are needed to understand and 
predict this behavior 

3.  The findings provide new insights on bonding 
under ‘normal’ conditions 

4.  There is the prospect for the creation of new 
useful materials 

5.  There are potentially important implications 
for soft matter and biology    
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