

Benzene-Derived Diamondoid Carbon Nanothreads

J. V. Badding, T. Fitzgibbons, V. Crespi, E. Xu, N. Alem *Pennsylvania State University*

G. Cody Carnegie Institution of Washington

S. K. Davidowski Arizona State University

R. Hoffmann, B. Chen Cornell University

M. Guthrie European Spallation Source

Funding: EFRee DOE Energy Frontier Research Center

Carbon Nanomaterial Dimensionality and Hybridization

sp³ Carbon Nanotube Theory Predictions

First evidence that very small sp³ carbon nanotubes are thermodynamically stable. Stojkovic, D. et.al. *PRL* **87**, (2001)

sp³ tube predicted to form during a high pressure reaction of benzene

Benzene Rapid Decompression: Amorphous Product

Slow Decompression in Larger Volumes

SNAP/ORNL Paris-Edinburgh cell allows for large sample volumes (mg to tens of mg scale).

Decompression rate \approx 2-7 GPa/hr

F c 4

Fitzgibbons et.al., Benzene-derived carbon nanothreads. *Nat. Mater.* **14**, 43-47 (2015)

Crystalline order – striations separated by 6.4 Å .

Index Bragg peaks with hexagonal 2-d lattice

a= 6.47 Å

First principles modeling: similar lattice parameter

Interplanar spacing vs pressure of nanothread and graphite

HPCAT, APS X-ray diffraction Nanothread sample loaded in diamond cell

Bragg peaks at low Q with diffuse scattering at high Q

PENNSTATE PDF Analysis Supports Nanothread Interpretation

1 8 5 5

Good agreement out to 3rd nearest neighbors!

Diamondoids have peaks not present in experiment.

Graphane interlayer spacings do not match large d spacings present in experiment

Flexure Mode

Further experiment shows totally symmetric radial breathing mode is polarized and non-totally symmetric flexure is not: strong constraints on structure

Benzene II Molecular Crystal at 2.5 GPa

Block, S., Weir, C. E. & Piermari, G. Science 169, 586 (1970)

TEM of second sample

Image Autocorrelation

* Axial beading at \approx 3.8 Å

Future

Increased axial order possible?

- Higher tensile moduli(1.5 TPa) than nanotubes?
- Intercalation of metals and molecules?
- Chemical functionalization?
- Conducting sp²/sp³ threads?
- Cross linked high strength composites?
- Low pressure synthesis?

Heteroatoms? Substitutions? Multiple Aromatic Rings?

Methods of organic chemistry are more versatile than conventional carbon nanomaterials thermolytic synthesis from individual atoms

Acknowledgements

Tom Fitzgibbon Fitzgildband ding Group

Synthesis: Stephen Aro, Kuo Li, and Jamie Molaison TEM: Ke Wang and Trevor Clark Neutron Diffraction: Joerg Neuefeind X-ray Diffraction: Chris Benmore NMR: Jeffery Yarger, Gregory Holland

Funding: EFRee DOE Energy Frontier Research Center

Spallation Neutrons at Pressure (SNAP) beamline Oak Ridge National Lab

HPCAT Beamline, Advanced Photon Source, Argonne National Lab