

Electrolyte infiltration studies of supercapacitors by neutron scattering

Cong Liu EFree Neutron Day, Dec 10 2015

Outline

Supercapacitors

Supercapacitors

Supercapacitors:

- No redox reactions
- "Fast charge/discharge rate
- " Low internal resistance
- "Long cycle life
- " High efficiency

Ragone chart

Surface area vs capacitance

Carbon	Specific capacity (F/g)	Specific capacity (F/cm2)	BET surface area (m2/g)	Pore volume (cc/g)	Average pore size (Å)
M-10	55.95	0.041	1370	0.5	9.12
M-14	57.2	0.0047	1223	0.561	9.6
M-15A	78.1	0.043	1800	0.629	9.17
M-15B	55.8	0.034	1624	0.563	9.37
M-15C	63.34	0.042	1518	0.6	9.79
M-20	100	0.046	2130	0.709	14.73
M-30	62.9	0.024	2571	1.23	14.95
A-10	35.3	0.031	1150	0.424 -	
A-20	41.2	0.02	2012	0.902	14.23
SACF-20	48.8	0.027	1839	0.699	9.74
SACF-25	27.9	0.011	2371	0.977	11.93

 Specific capacity doesn't have a linear relationship with surface area
Pore geometry, pore size and electrolyte infiltration have strong impact on specific capacity

Supercapacitive swing adsorption

- SSA technique for CO₂ adsorption;
- "Based on low-voltage and high-capacitance supercapacitor
- $^{\prime\prime}~$ SSA uses mobile ions to reversibly change interaction of CO_2 molecules with sorbent
- SSA utilizes high capacitances seen in the electric double layer capacitors (EDLCqs) to provide a driving force for ion sweeping in and out of electrodes

- "High surface area network of mesopores and micropores throughout electrically conducting high-surface area carbon (HSAC)
- "HSAC material combined with liquid or solid electrolyte form electric double layer capacitor with about 100 F/g capacitance

SSA mechanism

- ["] In discharged (field off) state, HSAC nanopores yield high adsorption capacity for CO_2 (~40 std. cm³/g at room temp.)
- In charged (field on) state, ions move from electrolyte into nanopores to form electric double layer
- " Two effects possible in principle:
 - ions displace CO₂ from pores (sweeping)
 - electrostatic ion-molecule interaction with surface ions increases adsorption (enhancement, dominant)
- Direction of effect may depend on electrode character (anode vs. cathode)

SSA experiment setup

Monolithic electrodes: BPL carbon with 5% binder

Electrolyte: 1M NaCl

Applied voltage: 1 volt

Void volume of the glass cell: 135mL

Electrode mass: 3.7g

Gas composition: 85% N_2 , 15% CO_2

SSA effect

Electrodes with different soaking time

The SSA effect increased by 18%

Neutron scattering experiment

Electrode material

Transmission electron microscopy

BET surface area: $640m^2/g$ CO₂ uptake capacity: 38 cc/g at STP Micropore: 0.4nm Mesopore: 2-4nm Natural selectivity for CO₂/N₂ : 9 Nitrogen adsorption isotherm

Neutron scattering experiment

- Carbon pellets prepared by mixing BPL carbon with 8% phenol resin, then carbonized at 900 ° C
- [″] 1 cm x 1 cm x 0.5 mm
- " 1M NaCl solution in D₂O as the electrolyte
- One electrode un-infiltrated, one electrode completely infiltrated by vacuum infiltration and a series of electrodes soaked in electrode with different times, such as 1h, 8h, 24h, and so on.

Justification for using neutron scattering

- Neutron contrast matching is a powerful tool to measure hydrogen concentration through neutron contrast and imaging
- VULCAN diffractometer has the high flux and spatial resolution suitable for this measurement
- Contrast matching neutron scattering to discover the degree of electrolyte infiltration with time
- This measurement will help to design further in-situ experiments in working supercapacitors and SSA devices

Acknowledgement

- " Dr. Kai Landskron
- ["] Dr. Chen Li
- ″Dr. Ke An
- ″Yiqun Liu

EFree ORNL