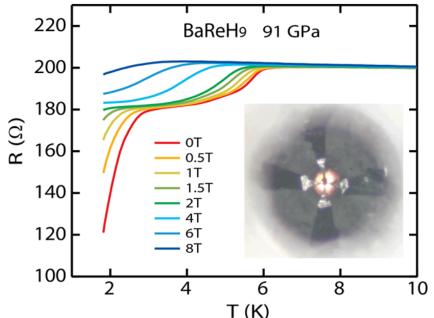
Metallization and Superconductivity in BaReH₉

Scientific Achievement

Finding of metallization and superconductivity in the most hydrogen-rich ionic salt BaReH₉ at extreme pressure

Significance and Impact


This result provides data needed to understand superconductivity expected to occur in hydrogen and some metal hydrides at extreme pressure.

Research Details

- Careful high pressure experiments using diamond anvil cells allow us to induce and observe metallization and superconductivity of the highly reactive compound BaReH_q.
- The metallic state of BaReH₉ was examined by electrical resistivity and the crystal structure determined by synchrotron X-ray diffraction, neutron diffraction and Raman spectroscopy.

Muramatsu, T, Wanene, W.K., Somayazulu, M., Vinitsky, E., Chandra, D., Strobel, T.A., Struzhkin, V.V., & Hemley, R.J., Metallization and superconductivity in the hydrogen-rich ionic salt BaReH₉. J. Phys. Chem. C, 119, 18007 (2015).

Facilities: Carnegie, SNS, APS

Temperature dependence of electrical resistivity of BaReH₉ at 91 GPa. A magnetic field suppresses the superconducting state. Inset: photo of the sample under pressure.

