Nanothreads

Compress benzene in a diamond anvil cell...

Smallest Nanotube: Breaking the Symmetry of sp^3 Bonds in Tubular Geometries

Dragan Stojkovic, Peihong Zhang, and Vincent H. Crespi*

FIG. 2. The relaxed structure of the (3,0) tube, both a doubled unit cell and a space-filling model of the tubular structure.

Transmission electron microscopy

as-prepared

after sonication

how many ways to make a nanothread?

Columns of stacked benzenes

many possible reaction pathways...

Enumerate

Which atoms bond up? To which atoms in the next ring?

<u>1325</u>46

0.66 eV

4.42 Å

79.2°

<u>13</u>4<u>5</u>62

0.69 eV

4.13 Å

39.7°

<u>14</u>52<u>6</u>3

0.75 eV

4.39 Å

102.9°

136542

0.96 eV

5.05 Å

86.3°

135246

0.64 eV

4.51 Å

115.3°

The fifteen lowest-energy nanothreads formed from 1 or 2 rings per topological repeat. Pair distribution function peaks at sp³ neighbor distances

sp³

diamondoid

nanothread

graphane

diamond

What can we do with them?

Topology		Helical Interpolation				Periodic approximate			
	Ring Count	Energy	Young's Modulus	λ	Screw	R.m	E_{\cdots}	$n_{\rm C}$	la a
Identifier	$(n_4, n_5, n_6,$	per $(CH)_6$	(free, pinned)	atoms/Å	(trans., rot.)	геп	\mathcal{L}_{gap}	μÇ	°C=C
	$n_7, n_8, n_{10})$	eV	TPa		(Å, °)	Å	eV		Å
Achiral									
$\underline{1}2\underline{3}4\underline{5}6^{a}$	$(0, 0, 6, 0, 0, 0)^*$	0.73	1.16	2.79	4.30	1.43	3.89	1	$1.54 \cdot \cdot 1.57$
$\underline{1}3\underline{5}462^{b}$	$(0, 4, 0, 0, 2, 0)^*$	0.82	0.98	2.41	4.98	1.40	4.79	4	$1.53 \cdot \cdot 1.60$
$\underline{14}3562$	$(1, 2, 2, 0, 0, 1)^*$	0.95	0.93	2.38	5.04	1.40	4.51	4	$1.53 \cdot \cdot 1.59$
$\underline{1}35\underline{4}62$	$(0, 4, 0, 0, 2, 0)^*$	0.97	0.90	2.60	9.23	1.41	4.55	3	$1.54 \cdot \cdot 1.58$
$\underline{153}624$	(0,4,1,0,0,1)	1.01	0.59	2.60	9.22	1.69	4.48	4	$1.53 \cdot \cdot 1.59$
$\underline{14}3\underline{5}62$	$(0, 2, 2, 2, 0, 0)^*$	1.04	1.08	2.44	4.91	1.35	4.11	4	$1.51 \cdot \cdot 1.67$
Stiff, chiral									
$\underline{14}3\underline{6}52^{c}$	$(0, 0, 6, 0, 0, 0)^*$	0.57	(1.11, 1.14)	2.45	(0.82, 130.0)	1.29	3.52	2	$1.54 \cdot \cdot 1.57$
$\underline{13}62\underline{5}4$	$(0, 2, 2, 2, 0, 0)^*$	0.62	(0.73, 0.74)	2.75	(4.37, 160.0)	1.97	4.27	12	$1.53 \cdot .1.58$
$\underline{13}6\underline{4}25$	(0,2,3,0,1,0)	0.70	(0.64, 0.64)	2.63	(4.57, 164.7)	1.88	4.28	12	$1.53 \cdot \cdot 1.57$
$\underline{13}5\underline{4}62$	(0,4,0,0,2,0)	0.81	(0.63, 0.76)	2.64	(2.27, 134.8)	1.58	4.55	6	$1.54 \cdot \cdot 1.57$
Soft, chiral									
$\underline{135}246$	$(0, 4, 0, 0, 2, 0)^*$	0.64	(0.31, 0.37)	2.66	(4.51, 115.3)	2.31	4.23	12	$1.53 \cdot \cdot 1.58$
$\underline{13}2\underline{5}46$	$(0, 2, 2, 2, 0, 0)^*$	0.66	(0.35, 0.37)	2.72	(4.42, 79.2)	2.10	4.16	12	$1.53 \cdot .1.58$
$\underline{13}4\underline{5}62$	$(0, 2, 2, 2, 0, 0)^*$	0.69	(0.08, 0.10)	2.91	(4.13, 39.7)	4.09	4.53	12	$1.53 \cdot .1.58$
<u>145263</u>	$(0, 2, 2, 2, 0, 0)^*$	0.75	(0.19, 0.26)	2.74	(4.39, 102.9)	2.44	4.19	12	$1.53 \cdot \cdot 1.58$
<u>136</u> 524	(0, 2, 2, 2, 0, 0)	0.96	(0.41, 0.45)	2.38	(5.05, 86.3)	2.26	4.24	12	$1.54 \cdot \cdot 1.59$

(some slides omitted for confidentiality)

Nanothreads

intermediate between polymer
& nanowire

/

- all-surface sp³
- does it work with multi-ring aromatics?
- how far can we lower the synthesis pressure?