Nanothreads

Compress benzene in a diamond anvil cell...

Momentum Transfer $Q\left(\AA^{-1}\right)$

Smallest Nanotube: Breaking the Symmetry of $s p^{\mathbf{3}}$ Bonds in Tubular Geometries

Dragan Stojkovic, Peihong Zhang, and Vincent H. Crespi*

FIG. 2. The relaxed structure of the $(3,0)$ tube, both a doubled unit cell and a space-filling model of the tubular structure.

Transmission electron microscopy

as-prepared

after sonication

how many ways to make a nanothread?

Polymer I

sp^{3} tube $(3,0)$

Columns of stacked benzenes

many possible reaction pathways...

Pair distribution function peaks at sp^{3} neighbor distances

OD
 1D

diamondoid

nanothread

diamond

sp^{2}

graphane

What can we do with them?

Topology		Helical Interpolation				Periodic approximate			
Identifier	Ring Count $\left(\mathrm{n}_{4}, \mathrm{n}_{5}, \mathrm{n}_{6}\right.$, $\mathrm{n}_{7}, \mathrm{n}_{8}, \mathrm{n}_{10}$)	$\begin{gathered} \text { Energy } \\ \text { per }(\mathrm{CH})_{6} \\ \mathrm{eV} \\ \hline \hline \end{gathered}$	Young's Modulus (free, pinned) TPa	$\begin{gathered} \lambda \\ \text { atoms } / \AA \end{gathered}$	$\begin{gathered} \text { Screw } \\ \text { (trans., rot.) } \\ \left(\AA,{ }^{\circ}\right) \\ \hline \end{gathered}$	$\begin{gathered} R_{\text {eff }} \\ \AA \end{gathered}$	$\begin{gathered} E_{\text {gap }} \\ \mathrm{eV} \end{gathered}$		$\begin{gathered} l_{\mathrm{C}-\mathrm{C}} \\ \AA \end{gathered}$
		Achiral							
$\underline{12} 34 \underline{4} 6^{a}$	$(0,0,6,0,0,0)^{*}$	0.73	1.16	2.79	4.30	1.43	3.89	1	$1.54 \cdot 1.57$
$\underline{135462}{ }^{\text {b }}$	$(0,4,0,0,2,0)^{*}$	0.82	0.98	2.41	4.98	1.40	4.79	4	$1.53 \cdot 1.60$
143562	$(1,2,2,0,0,1)^{*}$	0.95	0.93	2.38	5.04	1.40	4.51	4	$1.53 \cdot 1.59$
$\underline{135462}$	$(0,4,0,0,2,0)^{*}$	0.97	0.90	2.60	9.23	1.41	4.55	3	$1.54 \cdot 1.58$
$\underline{153624}$	$(0,4,1,0,0,1)$	1.01	0.59	2.60	9.22	1.69	4.48	4	$1.53 \cdot 1.59$
$\underline{14} 3562$	$(0,2,2,2,0,0)^{*}$	1.04	1.08	2.44	4.91	1.35	4.11	4	$1.51 \cdot 1.67$
		Stiff, chiral							
$\underline{143652}{ }^{\text {c }}$	$(0,0,6,0,0,0)^{*}$	0.57	(1.11, 1.14)	2.45	(0.82, 130.0)	1.29	3.52	2	$1.54 \cdot 1.57$
$\underline{136254}$	$(0,2,2,2,0,0)^{*}$	0.62	(0.73, 0.74)	2.75	$(4.37,160.0)$	1.97	4.27	12	$1.53 \cdot 1.58$
136425	$(0,2,3,0,1,0)$	0.70	(0.64, 0.64$)$	2.63	$(4.57,164.7)$	1.88	4.28	12	$1.53 \cdot 1.57$
$\underline{135462}$	$(0,4,0,0,2,0)$	0.81	(0.63, 0.76)	2.64	$(2.27,134.8)$	1.58	4.55	6	$1.54 \cdot 1.57$
		Soft, chiral							
135246	$(0,4,0,0,2,0)^{*}$	0.64	(0.31, 0.37)	2.66	$(4.51,115.3)$	2.31	4.23	12	$1.53 \cdot 1.58$
$\underline{132546}$	$(0,2,2,2,0,0)^{*}$	0.66	$(0.35,0.37)$	2.72	(4.42, 79.2)	2.10	4.16	12	$1.53 \cdot 1.58$
$\underline{13} 4562$	$(0,2,2,2,0,0)^{*}$	0.69	(0.08, 0.10)	2.91	$(4.13,39.7)$	4.09	4.53	12	$1.53 \cdot 1.58$
$\underline{1452 \underline{6} 3}$	$(0,2,2,2,0,0)^{*}$	0.75	(0.19, 0.26$)$	2.74	$(4.39,102.9)$	2.44	4.19	12	$1.53 \cdot 1.58$
$\underline{136524}$	$(0,2,2,2,0,0)$	0.96	(0.41, 0.45)	2.38	$(5.05,86.3)$	2.26	4.24	12	$1.54 \cdot 1.59$

(some slides omitted for confidentiality)

Nanothreads

- intermediate between polymer \& nanowire
- all-surface sp^{3}
- does it work with multi-ring aromatics?
- how far can we lower the synthesis pressure?

