Raman Studies on Functional Perovskite Oxides

Venkata S. Bhadram

Postdoctoral Research Associate Geophysical Laboratory Carnegie Institution for Science

Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore, India

Aim of the present studies

Structural distortions and their effect on the magnetic properties of rare-earth based oxides

Parameters: Temperature / Pressure

Raman scattering is sensitive to structural distortions and carry information related to the physical properties.

Multifunctional RBO₃

 $LaMn_{0.5}Co_{0.5}O_3$

Dual magnetic phases

J. Phys. Condens. Matter (2010) J. Appl. Phys. (2014) RCrO₃

Multiferroic Euro. Phys. Lett. (2013) Mater. Res. Exp. (2014)

Experimental facilities

Membrane Diamond Anvil Cell (MDAC)

35 GPa

Heating/Cooling stage

ABO₃ formula

Cationic size mismatch

✓ Octahedral tilting✓ Cation displacement

Tolarence factor (t) :

$$rac{d_{A-O}}{\sqrt{2}d_{B-O}}$$

cubic perovskite: t=1

structural distortion \rightarrow t \neq 1

Most common structures are "Rhombohedral (R-3c)" and "Orthorhombic (Pbnm)"

J. Phys. D: Appl. Phys. 45, 033001 (2012)

Corundum *R-3c*

Orthorhombic Cmmm

Science, 304, 855 (2004)

Photocatalytic splitting of H₂O for H₂ production

Energy Environ. Sci. 5, 9034 (2012)

Orthorhombic distortion

- □ BO₆ tilts around [010] → tilt angle " φ " & [101] → tilt angle " θ "
- □ A-ion displacement

Cubic (*Fm-3m*)

Orthorhombic (*Pnma*)

Orthorhombic distortion

Raman active modes are absent

Orthorhombic (*Pnma*)

Distinct magnetic phases in LaMn_{0.5}Co_{0.5}O₃

Phys. Rev. B, 67, 014401 (2003)

Two different T_c behavior ???

Magnetic ordering temperature

Spin Exchange Interactions

$$T_C = \frac{2nJ_{ex}(J+1)}{3K_B}$$

J_{ex}= exchange energy J = total angular moment n = number of nearest neighbors K_B = Boltzmann constant

Phys. Rev. Lett. 75, 914 (1995)

$$J_{ex} \propto Cos^4(\theta_{avg})$$

Raman studies

Difference in T_c values

The difference in T_c values can be understood qualitatively using Raman

Temperature dependent Raman scattering

Exchange coupling between magnetic ions contribute as:

 $\begin{array}{l} \Delta \omega_{\text{s-ph}} \approx \pm \lambda < S_{\text{i}}.S_{\text{j}} > \\ \textit{J. Appl. Phys. 64, 5876 (1988)} \end{array}$

In magnetic materials change in phonon frequency with temperature:

$$\Delta\omega(T) = (\Delta\omega)_{latt} + (\Delta\omega)_{anh} + (\Delta\omega)_{ren} + (\Delta\omega)_{s-ph}$$

Phys. Rev. B 60, 11879 (1999)

In case of magnetic insulators: $\Delta \omega(T) = (\Delta \omega)_{latt} + (\Delta \omega)_{anh} + (\Delta \omega)_{s-ph}$

In cubic anharmonic process, temperature dependence of phonon frequency:

$$\omega_{\rm anh}(T) = \omega_0 - C \left(1 + \left(\frac{2}{(e^{\hbar \omega_0/K_B T} - 1)} \right) \right)$$

temperature dependence of Raman linewidth:

$$\Gamma_{\rm anh}(\mathrm{T}) = \Gamma_0 + \mathrm{C}\left(1 + \left(\frac{2}{\left(e^{\hbar\omega_0/\mathrm{K_BT}} - 1\right)}\right)\right)$$

Any deviation is considered as due to spin-phonon coupling.

Temperature dependent Raman scattering

Co-existance of two magnetic phases is clearly seen from temperature dependent Raman

Conclusions

 $\hfill\square$ Distortion dependent Raman modes in LMCO could give a qualitative understanding of the two T_c behaviour.

□ Temperature dependence of Raman modes through spin-phonon coupling could show the coexistence of two magnetic phases in LMCO.

Multiferroicity in RCrO₃

Transport studies

□ Multiferroicity below Néel temperature (T_N) is observed in $RCrO_3$ only in the case of magnetic R^{3+} ion.

GdCrO₃, SmCrO₃, NdCrO₃ etc. – Multiferroic LaCrO₃, LuCrO₃, TbCrO₃ etc. – Non-multiferroic

Rajeswaran et.al. Phys. Rev. B (2012)

Applications in spintronics and magnetic memory devices

Multiferroicity in RCrO₃

Raman studies	
CEPI A LETTERS JOURNAL EXPLORING THE FRONTIERS OF PHYSICS	January 2013
EPL, 101 (2013) 17008 doi: 10.1209/0295-5075/101/17008	www.epljournal.org

Spin-phonon coupling in multiferroic RCrO₃ (R-Y, Lu, Gd, Eu, Sm): A Raman study

VENKATA SRINU BHADRAM, B. RAJESWARAN, A. SUNDARESAN and CHANDRABHAS NARAYANA

Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P. O., Bangalore 560 064, India

Magnetic *R*-Cr interactions mediated spin-phonon coupling could be leading to multiferroicity.

Motivation for high pressure studies

Reduce ' θ_{avg} '& '*l*' to increase T_N , but how???

Motivation for high pressure studies

Raman spectra of RCrO₃

 $\Box A_g(2)$ and $A_g(4)$ are soft modes whose frequency vary linearly with " ϕ " and " θ " respectively.

Pressure dependent Raman studies

Only in LaCrO₃, distortions reduce with increase in pressure

Pressure dependent Raman studies

Only in $LaCrO_3$, distortions reduce with increase in pressure

Compressibility : CrO₆ vs RO₁₂

Difference in compressions at Cr and R sites alters the octahedral tilting

Compressibility : CrO₆ vs RO₁₂

Compressibility : CrO₆ vs RO₁₂

XRD pattern

Lattice parameters

B₀= bulk modulus

Cell distortion factor

Softmode vs Tilt angle

By neglecting the self distortion of the CrO_6

$$\varphi = \cos^{-1}\left(\frac{a}{\sqrt{2}c}\right)$$
 $\theta = \cos^{-1}\left(\frac{a}{b}\right)$

Phys. Earth. Planet. Inter. 76, 1 (1993)

Softmode vs Tilt angle

Behavior of octahedral distortions w.r.t. chemical pressure (*R*-ion size) and external pressure is different.

Pressure effects on the Néel temperature

Bloch's rule: Based on the change in lattice volume with pressure,

 $\frac{dT_N}{dP} = 3.3T_N\kappa$ ' κ ' is the compressibility J. Phys. Chem. Solids, 27, 881 (1965) $\frac{dT_N}{dP}$ = (1.561)_{Gd} < (2.543)_{Eu} < (2.691)_{Sm} degree/GPa $T_N^{Cr} \propto cos^4(\alpha)/l^7$ Phys. Rev. B 81, 214115 (2010) where $\alpha = \frac{\theta + 2\varphi}{2}$ and $l = \langle Cr - 0 \rangle$ $\frac{dT_N^{Cr}}{dP} = -T_N \left[\frac{7}{l} \frac{dl}{dP} + \left(2 \tan\left(\frac{\theta + 2\varphi}{2}\right) \left(\frac{d\theta}{dP} + 2\frac{d\varphi}{dP}\right) \right) \right]$ **Positive/negative quantity Negative quantity** (Raman data)

Explicit relation

34

Pressure effects on the Néel temperature

 $\frac{dT_N}{dP}$ is more sensitive to compression of Cr-O under external pressure

Conclusions

Increasing *R***-ion size**

Pressure effects on perovskite distortions

 \checkmark Role of *R*-ion size

 \checkmark Effect on the magnetic properties

✓ Chemical pressure vs external pressure

V. S. Bhadram et al, *Mater. Res. Express* 1, 026111 (2014) V. S. Bhadram et al (unpublished results)

Acknowledgements

Chandrabhas Narayana

Sundaresan A

Anil Kumar

Kaustuv Manna

Dhanya R

JNCASR

Thank you