Potential High-T_c Superconductivity in La and Y Hydrides ### Scientific Achievement 06/2017 Novel hydrogen-rich lanthanum and yttrium hydride structures are predicted to exhibit superconductivity near room temperature under pressure. ### **Significance and Impact** First-principles calculations predict that superconductors with $T_{\rm c}$'s above 300 K could be synthesized in the La-H and Y-H systems at currently accessible laboratory pressures. The results open the prospect for the design, synthesis, and recovery of new high temperature superconductors. #### **Research Details** - Crystal structure prediction for La-H and Y-H systems at 150 and 300 GPa. - First-principles calculations of energies, band structures and phonons for LaH₁₀ and YaH₁₀. - Superconducting calculations for predicted structures based on BCS theory. - BCS calculations suggest that T_c of ~305 K for YH₁₀ at 250 GPa, ~274 K for LaH₁₀ at 210 GPa. H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft and R. J. Hemley, Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure, *Proc. Natl. Acad. Sci. USA, in press.* The predicted structure of LaH_{10} and YH_{10} , with the cube hydrogen units [4⁶6¹²], and calculated T_c as a function of pressure. # Potential High-T_c Superconductivity in La and Y Hydrides Table S1. T_c of La–H and Y–H systems at different pressures calculated using the McMillan and Eliashberg equations | Compound | Pressure, GPa | λ | w _{log} , K | T_c , K; μ * = 0.1
McMillan | T_c , K; $\mu^* = 0.13$
McMillan | T_c , K; $\mu^* = 0.1$
Eliashberg | T_c , K; $\mu^* = 0.13$
Eliashberg | |-------------------|---------------|------|----------------------|--------------------------------------|---------------------------------------|--|---| | LaH ₄ | 300 | 0.43 | 1,624 | 10 | 5 | 10 | 5 | | LaH ₈ | 300 | 1.12 | 1,591 | 131 | 114 | 150 | 138 | | LaH ₁₀ | 210 | 3.41 | 848 | 238 | 219 | 286 | 274 | | LaH ₁₀ | 250 | 2.29 | 1,253 | 232 | 212 | 274 | 257 | | LaH ₁₀ | 300 | 1.78 | 1,488 | 215 | 196 | 254 | 241 | | YH ₁₀ | 250 | 2.58 | 1,282 | 265 | 244 | 326 | 305 | | YH ₁₀ | 300 | 2.06 | 1,511 | 255 | 233 | 308 | 286 | (a) YH₂, (b) YH₃ (c) YH₄, (d) YH₆, (e) YH₈ and (f) YH₁₂. Large and small spheres represent Y and H atoms at 250 GPa. (d) (f) LaH₂, (h) LaH₃ (i) LaH₄, (j) LaH₅, (k)LaH₆ and (l) LaH₈. Large and small spheres represent La and H atoms at 250 GPa. (b) (f)